TEST EXAM FTV1 - RUG (1)
 May 2018

Maximum \# points for each question are indicated

Question 1

Consider stirring in a closed reactor vessel filled with water. At a rotational speed of $400 \mathrm{~s}^{-1}$ the flow regime changes from laminar to turbulent. This so-called critical rotational speed $\left(\mathrm{n}_{\mathrm{cr}}\right)$ for inducing turbulent flow is a function of the density (ρ) and viscosity (η) of the fluid and the diameter (D) of the vessel.
Density of water: $\rho=10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$; Viscosity of water: $\eta=10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}$
A) Derive the dimensionless group containing $n_{c r}, \rho, \eta$ and D.

We repeat the experiment with a geometrically similar but twice as large vessel and with the vessel filled with a different fluid. It turns out that n_{cr} remains the same.
B) What is the numerical value of ρ / η of the fluid?

Question 2

Consider a completely filled cylindrical chemical reactor of length 3 m and diameter 1 m . Due to the chemicals present, exothermal reactions produce a heat per unit volume (q) of $2 \mathrm{~kW} / \mathrm{m}^{3}$. The reactor is not stirred implying that heat transfer inside the reactor occurs by means of conduction only. The reactor is cooled at the outside by flowing air of $20^{\circ} \mathrm{C}$ and the overall heat transfer coefficient between reactor and air equals $100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Assume steady-state conditions.
A) Give the expression for the temperature distribution in the reactor.
B) Given a thermal conductivity of the medium of $\lambda=0.2 \mathrm{~W} / \mathrm{mK}$, calculate the temperature at the reactor wall $\left(\mathrm{T}_{\mathrm{w}}\right)$.

Question 3

Imagine a cylindrical open tank with cross-sectional area A filled with pure water. Because of a hole in the bottom with cross-sectional area A_{l} water is flowing out with velocity v_{1}. Simultaneously, pure water is flowing in with velocity v_{2} through a pipe with cross-sectional area A_{2} above the tank. Friction losses can be ignored and $A=100 A_{l}$ and $A_{2}=2 A_{l}$.
Gravitational acceleration (g) is $10 \mathrm{~m} / \mathrm{s}^{2}$.

A) Calculate the steady-state water level height h in the tank, given $\mathrm{v}_{2}=5 \mathrm{~m} / \mathrm{s}$.

While at steady-state $(d h / d t=0)$, at $t=0$ compound c is added to the inflow stream with concentration $c_{i n}$. The tank is well-stirred.
B) Give the concentration of c in the tank as function of time given $c_{i n}=10 \mathrm{~mol} / \mathrm{l}$. Check your answer by studying the initial and final concentration of c in the tank!

Question 4

A small spherically-shaped solid object (diameter $\mathrm{d}=1 \mathrm{~mm}$) is dropped into a large volume of water of where it almost immediately reaches a low and constant velocity. Because of the low velocity the flow around the sphere is laminar.
Density of water: $\rho=10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3}$; Viscosity of water: $\eta=10^{-3} \mathrm{~kg} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{-1}, \mathrm{~g}=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$
A) Write down the force balance for the system.
B) Calculate the velocity of the object given a density difference between object and water of $20 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

Question 5

Consider a vertical cylindrical tube with radius R. The tube is open at both ends and filled with glycerin, a highly viscous fluid.

Due to gravity, the glycerin flows downwards but because of its high viscosity, at a low and uniform velocity and only in the y-direction, implying $v_{x}=v_{z}=0$.
Gravitation is only in the y-direction, implying $\mathrm{g}_{\mathrm{x}}=\mathrm{g}_{2}=0$. There are no pressure gradients in any direction. Assume steady-state conditions.
A) What is the shear stress in the center of the pipe at $x=0$?
B) Derive the velocity profile for laminar flow using the Navier-Stokes equations below, i.e. eliminate all irrelevant terms and solve the remaining differential equation.

$$
\begin{aligned}
& \rho\left\{\frac{\partial v_{x}}{\partial t}+v_{x} \frac{\partial v_{x}}{\partial x}+v_{y} \frac{\partial v_{x}}{\partial y}+v_{z} \frac{\partial v_{x}}{\partial z}\right\}=\eta\left\{\frac{\partial^{2} v_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}+\frac{\partial^{2} v_{x}}{\partial z^{2}}\right\}-\frac{\partial p}{\partial x}+\rho g_{x} \\
& \rho\left\{\frac{\partial v_{y}}{\partial t}+v_{x} \frac{\partial v_{y}}{\partial x}+v_{y} \frac{\partial v_{y}}{\partial y}+v_{z} \frac{\partial v_{y}}{\partial z}\right\}=\eta\left\{\frac{\partial^{2} v_{y}}{\partial x^{2}}+\frac{\partial^{2} v_{y}}{\partial y^{2}}+\frac{\partial^{2} v_{y}}{\partial z^{2}}\right\}-\frac{\partial p}{\partial y}+\rho g_{y} \\
& \rho\left\{\frac{\partial v_{z}}{\partial t}+v_{x} \frac{\partial v_{z}}{\partial x}+v_{y} \frac{\partial v_{z}}{\partial y}+v_{z} \frac{\partial v_{z}}{\partial z}\right\}=\eta\left\{\frac{\partial^{2} v_{z}}{\partial x^{2}}+\frac{\partial^{2} v_{z}}{\partial y^{2}}+\frac{\partial^{2} v_{z}}{\partial z^{2}}\right\}-\frac{\partial p}{\partial z}+\rho g_{z}
\end{aligned}
$$

