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Problem #1. Complex Numbers and Differential Equations (10 Points)

Part 1)
a. i) R = 5 + 5i

ii) modulus =
√

52 + 52 =
√

50 phase = arctan
5

5
= 0.785

b. i) S = 3 + 4i

ii) modulus =
√

32 + 42 = 5 phase = arctan
4

3
= 0.927

c. i) T = 1

ii) modulus = 1 phase = arctan
0

1
= 0

Part 2) λ2 = −25

λ = 5i

y(t) = C exp(5i ∗ t) = C1 ∗ cos(5t) + C2 sin(5t)

y(0) = C1 = 2

y′(t) = −5C1 sin(5t) + 5C2 cos(5t)

y′(0) = 5C2 = 5

C2 = 1

General solution:
y(t) = 2 cos(5t) + sin(5t)
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Problem #2. Mechanical Oscillations without Damping (17 Points)

a) Under the assumption that θ is very small:

sin(θ) ≈ θ

ω2
0 =

g

L

b)

θ =θ0 sin(ω0t+ α)

θ′ =ω0θ0 cos(ω0t+ α)

θ′′ =− ω2
0θ0 sin(ω0t+ α) = −ω2

0θ

Fill in for the differential equation to find that it is indeed the solution to the
differential equation.

c)

ω0 =

√
g

L
= 1.98 rad/s

T =
2π

ω
= 3.17 s

d)

h = L− L cos(θ) = 2.5− 2.5 cos(20o) = 0.15 m

Epot = mgh = 7850 · 9.81 · 0.15 = 11610 J = 11.6 kJ

e) vmax occurs at the equilibrium point h = 0 or θ = 0◦,
amax occurs at maximum amplitude θ = 20◦

ETot. = Ekin + Epot =
1

2
mv2 +mgh

ETot. = 11.6 kJ

f) Nothing, the period, the speed and the acceleration are independent of the
mass.
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Problem #3. Mechanical Oscillations with Damping (17 Points)

a) Assume the water has zero gravitational potential energy. Assume that Dagob-
erts closest position is height h above the water (h can be negative). De-
fine h0 = 200m. Hence, Dagoberts total energy before his free fall equals
E = mgh0. At the closest point to the water, Dagoberts speed is zero (oscil-
lation extremum), hence his energy is a sum of grativational potential energy
Eg = mgh and spring potential energy Es = 1

2
ku2 where u is the distance over

which the rope is strechted. Hence we now have to define u in terms of h.
Since we know that the total lenght of the rope has to equal h0 − h and the
unstrechted length of the rope is l = 50 m, this would be u = h0 − h− l. Hence
balancing the total energy gives:

mgh0 = mgh+
1

2
k(h0 − h− l)2

1 point
Define x = h0 − h. Then we can rewrite our equation as:

mgx =
1

2
k(x− l)2 =

1

2
kx2 − kxl +

1

2
kl2

Or we can write it as:

1

2
kx2 − (kl +mg)x+

1

2
kl2 = 0

Solving this with the abc formula gives:

a =
1

2
k = 4 J/m2 b = −(kl +mg) = −792.40 J/m c =

1

2
kl2 = 10000 J

D = b2 − 4ac = 4.6790 · 105 J2/m2

x = 13.546m or x = 184.55 m

1 point
The first solution gives a height h above h0 − l which means the rope is not
even stretched. Hence this answer is unphysical. The second solution gives a
height h = 15.45 m above the water. Hence, Dagobert does NOT get wet. 1
point
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b) After the oscillation damped out, this is just a matter of balancing gravity
with the spring force.

mg = k ∗ u
This gives a stretch in the rope of u = 49.050 m. Hence, the equilibrium above
the water is at a height h = h0 − l − u = 100.95 m. 1 point

c) Dabogerts natural oscillation frequency equals ω0 =
√
k/m = 0.45 rad/s. The

time between Dagoberts closest point to the water and his highest point im-
mediately afterwards is half the oscillation period. Hence, this time equals

t =
T

2
=

π

ω0

= 7.0248 s

1 point

The amplitude close to the water equals

A0 = 100.95 m− 15.45 m = 85.5 m

The amplitude of the first swing upwards Reaches a height of 200 m− 20m = 180 m
and therefore equals

A1 = 180 m− 100.95 m = 79.05 m

1 point

We know that the amplitude decays exponentially, hence we can solve gamma
from the following equation:

A1

A0

= e−γt

0.5 point
Where we calculated t before. This results in γ = 0.011 1/s. 0.5 point

With the assumption of 100 m equilibrium point and 10 m above the water,
one would get A0 = 90 m and A1 = 80 m. This results in a damping factor of
γ = 0.017 1/s.

d) Our damping factor would result in an oscillation frequency of ω =
√
ω0

2 − γ2 = 0.44707 rad/s
while ω0 = 0.44721 rad/s. Hence, our assumption that Dagobert oscillates al-
most with the natural frequency was justified. 1 point
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e) An undriven damped harmonic oscillation is described by

x(t) = Be−γt cos(ωt− α)

1 point

This will give a speed of

x′(t) = −γBe−γt cos(ωt− α)− ωBe−γt sin(ωt− α)

1 point

We know that the maximum speed occurs at the equilibrium position. (since
ω ≈ ω0 this is also true for damped oscillations). Hence we can compute B
and α and then solve t at the equilibrium position. Then we can compute
the speed. Define your starting time t = 0 at the moment when Dagobert is
at his lowest point. As calculated in part c), this means that we start from
rest (speed is zero at the maximum position) at an amplitude of A0 = 85.5 m.
This means that α = 0 and B = A0 = 85.5 m. 1 point. Solving for x(t) = 0
gives then

A0e
−γt cos(ωt) = 0

cos(ωt) = 0

ωt =
π

2
+ k · π

We wanted the maximum speed Dagobert will ever have. Since the oscillation
is damped, this happens at the first time when Dagobert crosses the equilib-
rium, hence at k = −1, when he makes his first free fall. Hence, t = − π

2ω
. 1

point. Now fill this in into our equation for speed:

x′(t = −π/(2ω)) = −γBe+
γπ
2ω cos(−π/2)−ωBe+

γπ
2ω sin(−π/2) = +ωBe+

γπ
2ω = +39.75 m/s

The plus sign is due to the fact that we define the positive displacement in the
downward direction, while Dagobert also crosses the equilibrium (during his
first free fall at time t < 0) in the downward direction. Hence, v = 39.75 m/s.
1 point

With γ = 0.017 1/s and A0 = 90 m one obtains: v = 42.663 m/s.

f) If Dagobert has to hit the water due to the steady state motion, The steady
state amplitude has to be bigger than the equilibrium height of 100.95 m. Call
this equilibrium height heq. Then we need to solve

A ≥ heq
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1 point
Solving the equality first gives us:

A = heq

F0/m√
(ω2 − ω0

2)2 + 4γ2ω2
= heq

1√
(ω2 − ω0

2)2 + 4γ2ω2
=
mheq
F0

(ω2 − ω0
2)2 + 4γ2ω2 =

F0
2

m2heq
2

Introduce x = ω2 and rewrite the equation to

(x− ω0
2)2 + 4γ2x− F0

2

m2heq
2 = 0

Which will reduce

x2 + (4γ2 − 2ω0
2)x+ (ω0

4 − F0
2

m2heq
2 ) = 0

1 point
Solving this with the abc-formula gives

a = 1 b = 4γ2 − 2ω0
2 = −0.39950 c = ω0

4 − F0
2

m2heq
2 = 0.039387

This gives
D = b2 − 4 ∗ a ∗ c = 0.0020544

Which returns
x = 0.22241 or x = 0.17709

This gives us two frequencies of ω:

ω = 0.42082 or ω = 0.47161

1 point
Knowning that the resonance frequency is in between (as is the natural fre-
quency), any frequency obeying 0.42082 ≤ ω ≤ 0.47161 will cause that Dagob-
ert hits the water. Hence the smallest dirving frequency Donald has to use is
ω = 0.42082 rad/s. 1 point

In case an equilibrium height of 100 m is used, a minimum frequency of
ω = 0.42051 rad/s is obtained.
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Problem #4. Electric Circuit – I (18 Points)

a) ΣV = 0 around a loop and ΣI = 0 at any node.

b) Current Law:
I1 − I2 − I3 − I4 − I5 = 0 (1)

I4 + I5 + I6 − I7 = 0 (2)

I3 + I7 − Iin = 0 (3)

c) Voltage Law:
Vin − V1 − V3 = 0 (4)

V3 − V4 − V7 = 0 (5)

V4 − V5 = 0 (6)

V5 − V2 − V6 = 0 (7)

d) The first step is to realize that R2 and R6 are connected in series, thus they
can be added:

R2+6 = R2 +R6 = 3 Ω + 7 Ω = 10 Ω

The circuit can then be redrawn:

The R4, R5, and R2+6 resistors were drawn this way to make it clear that they
are all in parallel. Because parallel resistors add inversely, their equivalent is:

Rnew = [1/R4 + 1/R5 + 1/R2+6]
−1 = [1/20 + 1/10 + 1/10]−1 = [5/20]−1 = 4 Ω

Again, we redraw the diagram:
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Since R7 and Rnew are connected in series, we add them:

R7+new = R7 +Rnew = 6 Ω + 4 Ω = 10 Ω

Redrawing the diagram:

We now find the value of the remaining parallel circuit:

Rnew2 = [1/R3 + 1/R7+new]−1 = [1/10 + 1/10]−1 = [2/10]−1 = 5 Ω

Redrawing one last time:

The equivalent resistance is, therefore, the series addition between R1 and
Rnew2:

Requiv. = R1 +Rnew2 = 5 Ω + 5 Ω = 10 Ω

e)

I1 = 1 A; I2 = 0.2 A; I3 = 0.5 A;

I4 = 0.1 A; I5 = 0.2 A; I6 = 0.2 A;

I7 = 0.5 A

f)

V1 = 5 V; V2 = 0.6 V; V3 = 5 V

V4 = 2 V; V5 = 2 V; V6 = 1.4 V

V7 = 3 V

g) All voltages and currents from e) and f) times one third.
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Problem #5. Electric Circuit – II (18 Points)

a)
Ztot = ZL + ZR = iωL+R

b)

AL =
VL
Vin

=
iωL

R + iωL
=
ω2L2 + iωLR

R2 + ω2L2

This is Equation (V.32) of the Syllabus.

c)

|AL| =
√
Re(AL)2 + Im(AL)2 =

ωL√
R2 + ω2L2

φAL = arctan(
Im(AL)

Re(AL)
) = arctan(

R

ωL
)

These are Equations (V.34) and (V.35) of the Syllabus.

d) |AR| = R√
R2+(ωL− 1

ωC
)2

Equation (V.49) of the Syllabus.

e) ω = 2π × 50 rad/s

C = 18.4 µF
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Problem #6. Business Dynamics (20 Points)

a) RED: Machine C
BLUE: Machine D

b) #RED = rb,RED = 60min
5min/unit

= 12units/h

#BLUE = rb,BLUE = 60min
6min/unit

= 10units/h

c) Add an extra machine D; and
Reduce the process time of machine D.

d) Each 5 minutes (bottleneck) machine E produces a RED product.
So utilization is 3/5=60%.

e) Machine A takes 4 minutes to produce a RED and a BLUE product. There-
fore, station C and D remain the bottleneck. Machine F has an input of 10
units/hour of BLUE and 12 units/hour of RED. (see b)) Total input for ma-
chine F is 22 units/hour. Machine F produces a RED and a BLUE product
at a rate of 15 units/hour. This will be done in alternating order.
So 7.5 RED products per hour
and 7.5 BLUE products per hour.

f) The bullwhip effect. It refers to a trend of larger and larger swings in inventory
in response to changes in demand, as one looks at companies further back in
the supply chain of a product. The following words or synonyms should be
used correctly to obtain full points:
swings (oscillations), supply chain, demand changes.

g) Causes:
forecasting / fluctuating demand / order batching / price variability / large
orders in case of inventory shortage / small order in case of large inventory /
...
Preventive measures: Steady prices / no order batching / stabilizing demand
/ stop (multiple) forecasting) / information sharing / ... (1 point for
correct measure + explanation)

h) Eigen frequencey, ω0 =
√

1
Tτ

.

i) Using the conditions γ2 > ω2
0 and requiring that one has a bound solution,

one obtains: (β + ε) > 2
√

T
τ
> 0.
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