

Master IEM Chemical Engineering

Master project (examples)

The last thing you do over here can very well be the first you do in a company!

Collaboration with many companies

- ☐ Guest lectures (Polymer Products the all course...)
- Master Thesis and of course Internship!

Starch modification

$$\begin{bmatrix} H & OH \\ HO & OH \\ OH & OH \\ \end{bmatrix} + R & OR* & HO & OH \\ \end{bmatrix} + R_1$$

R= fatty acid chain
(a) Vinyl esters : $R^* = \bigcirc_{CH_2}$, $R_1 = H_3C$

(b) Methyl esters : $R^* = CH_3$, $R_1 = H_3C - OH$

(c) Anhydrides : $R^* = \bigcap_{R} \bigcap_{R} \bigcap_{R} \bigcap_{OH}$

Which solvent? Toluene, DMSO?

Green
Easy to remove
Plenty available

hydrophilic

hydrophobic

No.	Products	DS	Contact angle
1	Starch laurate	0.28	90 ± 1.6
2	Starch laurate	0.26	94 ± 2.1
3	Starch laurate	0.15	104 ± 1.8
4	Starch laurate	0.03	102 ± 1.9
5	Starch laurate	0.02	96 ± 1.4
6	Starch laurate (6 h) ^a	0.05	n.m.c
7	Starch stearate	0.06	n.m.c
7	Amylose laurate ^b	0.1	n.m.c
8	Amylopectin laurate ^b	0.15	n.m.c
9	Native potato		45 ± 2.1
10	Vinyl laurate		

Biodiesel

Biofuels project; novel biodiesel technology

CCS equipment: Centrifugal-contactor separator

On the importance of Catalysis

Three-way catalysts:

Rh + Pt on γ -Al₂O₃

H2O, CO2

Haber-Bosch process:

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$

production: 100 million tons/year

Fe-based catalyst

Zeolite catalysts for oil-refining

3-way Catalyst

From CO₂ to valuable products

 CO_2 is an inexpensive, non-toxic, widely available and renewable (\rightarrow green) C_1 -feedstock.

Can we use CO₂ as building block for polymers and other useful products?

Design and development of enhanced catalysts for the conversion of CO₂

More info?
Paolo Pescarmona
(p.p.pescarmona@rug.nl)

Biomass components to obtain specific chemicals and/or product mixtures

More info? Peter Deuss (p.j.deuss@rug.nl)

Novel reactor concepts + precision catalysis for highly efficient chemical conversion

Jun Yue (yue.jun@rug.nl)

Vapor deposition polymerization and polymer structure-property relationships

Design of well-defined functional (co)polymers for industrial applications

