Student name:
Student number:

Materials and Molecules

Mock exam 2023
The exam may appear long, but all questions can be answered very concisely. Work fast. Hint: when you cannot answer a question immediately, do not keep on thinking for a long time, but move on to the next question. Then, come back to the skipped and unanswered question(s) later when you still have time.

General and organic chemistry

Question 1 (12 points)

The molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ belongs to a certain group of organic compounds. Two structural isomers of molecules that are described by this molecular formula are given below.

1

2
a) Give the names of $\mathbf{1}$ and $\mathbf{2}$ according to the IUPAC naming rules. ($2 p$)
b) Are $\mathbf{1}$ and $\mathbf{2}$ chiral? Why (not)? (2 p)
c) Some of the physical properties of $\mathbf{1}$ and $\mathbf{2}$ are listed in the table below. Explain the differences in boiling point and solubility (in water). If you have a mixture of both, how could you separate them? (4 p)

Compound	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{T}_{\mathbf{m}}\left({ }^{\circ} \mathrm{C}\right)$	-172	-73
$\mathbf{T}_{\mathbf{b}}\left({ }^{\circ} \mathrm{C}\right)$	62	119
Density $\left(\mathrm{g} \mathrm{ml}^{-1}\right)$	0.739	0.812
Solubility in $\mathrm{H}_{\mathbf{2}} \mathrm{O}\left(\mathrm{g} \mathrm{L}^{-1}\right)$	<1	45

d) Another compound with the same molecular formula would be 3-methylbutan-2-ol. Draw its structure using the bond-line method. Indicate its chiral center(s). (2p)
e) Give the structures of two more constitutional isomers. (2 p)

Student name:
Student number:

Student name:
Student number:

Question 2 (12 points)

Luminol is a chemiluminescent compound, meaning that it emits blue light when undergoing a specific chemical reaction, in this case an oxidation. You may have encountered it in crime series, where the investigator sprays a solution of both luminol and oxidant in the area of interest. The iron that is present in blood catalyzes the oxidation. Luminol (compound $\mathbf{3}$) can be synthesized via a two-step reaction, starting from 3 -nitrophthalic acid (compound $\mathbf{1}$). The product of reaction I (compound 2) is subsequently treated with sodium dithionite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\right)$ to finally give luminol. For some of these compounds the molecular weights and/or chemical formulas are already given.

Chemical Formula: ?
Molecular Weight: ?

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$
3 Molecular Weight: ?
a) For reaction I, give the atomic composition of compound "X" (2 p)
b) In reaction II, sodium dithionite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\right)$ is used as a so-called hydrate, meaning that the salt contains n molecules of water. Determine the value of " n ". (2 p)
c) Starting with 5.62 g of 3-nitrophthalic acid (1), how much luminol (3) (ing) can be obtained at 100% conversion? (4 p)

Student name:
Student number:

Student name:
Student number:

It turns out that reaction II is incomplete (starting from 7.30 g of $\mathbf{2}$), and furthermore, an undesired side-product is formed (compound 4). The reaction mixture consists of 1.23 g 2 , 3.50 g 3 and 2.67 g 4.

Chemical Formula: $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{NaO}_{5} \mathrm{~S}$ Molecular Weight: $279.20 \mathrm{~g} \mathrm{~mol}^{-1}$
d) Calculate the conversion of 2. (4 p)

Polymer science

Question 3 (8 points)

Polylactic acid is made by polymerizing the monomer lactic acid. During this reaction a carboxylic acid group reacts with an alcohol group.
a) What is the name of the bond that is formed upon reaction of a
 carboxylic acid and an alcohol? (2 p)
b) Draw the general structure of this bond. (2 p)
c) Which class of polymerizations does this polymerization fall into? (2p)
d) Draw the molecular structure of polylactic acid. (2 p)

Question 4 (8 points)

Viscoelasticity of polymers can be modelled with springs and dashpots. In this question we assume the polymer to behave according to the model shown on the right; a purely viscous damper (with viscosity η) and a purely elastic spring (with spring constant k) connected in series. At $t=0$ we apply a constant stress (σ) to the polymer. This stress is removed at $t=$ 100 s.
a) Draw the stress as a function of time from $t=0$ till $t=100 \mathrm{~s}$. (4 p$)$
b) Draw the strain as a function of time from $t=0$ till $t=100 \mathrm{~s}$. (4 p$)$

Question 5 (8 points)

You are given two plastic cups and asked to hit them with a hammer.
a) Which one is more likely to shatter, a cup made from polystyrene or polypropylene? Explain why. (4 p)
b) Draw the molecular structures of polystyrene and polypropylene. (4 p)

Student name:
Student number:

Student name:

Student number:

Biomolecules

Question 6 (8 points)

This question consists of 6 multiple choice questions. Grading of these questions: 1 or 2 correct $=0 ; 3=2 ; 4=4 ; 5=6 ; 6=8$ points. Please encircle the correct answer as follows:
(A.) $x x x$
B. Yyyy
C. Zzzz
D. Www

1. There are five types of nitrogenous bases, four of which are found in the DNA molecule. These are:
A. Adenine, thymine, guanine, uracil
B. Adenine, uracil, guanine, cytosine
C. Adenine, thymine, cytosine, guanine
D. Adenine, uracil, phosphate, ribose
2. How many carbons are present in the diterpene farnasene?
A. 10
B. 5
C. 15
D. 12
3. The alpha-helical structure of a protein is stabilized mainly by ...?
A. Hydrogen bonds
B. Disulphide bonds
C. Glycosidic bonds
D. None of these
4. A membrane lipid contains ... fatty acid side chains.
A. 1
B. 2
C. 3
D. None

Student name:
Student number:
5. The melting point of a fat with many unsaturated fatty acids is ... than/to a fat with only saturated fatty acids.
A. Higher
B. Lower
C. Equal
D. Similar
6. What is the correct order, going from high to low bond strength?
A. C-C covalent bond $>$ hydrogen bond $>$ ionic interaction
B. Ionic interaction $>\mathrm{C}-\mathrm{C}$ covalent bond $>$ hydrogen bond
C. Ionic interaction $>$ hydrogen bond $>\mathrm{C}-\mathrm{C}$ covalent bond
D. Hydrogen bond $>$ lonic interaction $>\mathrm{C}-\mathrm{C}$ covalent bond

Question 7 (8 points)

a) Please draw the Fisher structure of the L-isomer of a C5 aldehyde sugar. (6 p)
b) Draw the C3 epimer of the same sugar. (2 p)

Question 8 (4 points)

Please draw the structure of the tripeptide of the amino acid alanine (methyl side chain functional group).

Student name:
Student number:

Student name:
Student number:

Materials science

Question 9: Mechanical properties (10 points)

A specimen of pure copper has a yield strength of 110 MPa and of pure nickel 200 MPa . The yield strength is the stress level that marks the transition from elastic to plastic deformation.
a) What happens on the atomic/microscopic scale in metals like copper and nickel when they start to deform plastically? (Can be answered in 1 or 2 sentences) ($3 p$)
b) The nickel is alloyed with 5 atomic percent copper. Compared to pure nickel, is the yield strength decreasing, staying the same or increasing? Motivate your answer in 1 or 2 sentences. (4 p)
c) Why are windows (next to the passenger seats) in an airplane round and not rectangular? (Can be answered in 1 or 2 sentences.) (3 p)

Question 10: Electrical properties (10 points)

We have p-doped silicon.
a) Which atoms (at least mention three elements that) can be used for this type of doping? Hint: Look at the Periodic Table of the Elements at the end of the exam. (3 p)
b) Schematically draw how (for a standard doping level) the conductivity of this material (y -axis) depends on the temperature (x-axis). Note that you must start from zero Kelvin! (Hint: The answer is in the equations at the end of this exam.) (4p)
c) How is it possible that the resistivity of a semiconductor like intrinsic silicon reduces when we shine visible light on it? (Can be answered in 1 or 2 sentences) (3 p)

Student name:
Student number:

Question 11: Materials Selection and Design (5 points)

When designing with materials, we want to use shapes that produce maximum performance for the least amount of material used. Draw schematically what the optimum shape is of the cross-section of a long beam when it is loaded by (1) bending and (2) torsion. Note that the shapes are different for these two different modes of loading! So, draw two different (cross section) shapes and motivate (in about one sentence) for each shape why it is the optimum one for the given mode of loading.
(Note that this optimization problem relates to maximizing the integral $\int y^{2} d A$ in case of bending and $\int r^{2} d A$ in case of torsion with y the distance to the bending axis in the crosssection, with r the distance to the rotation point in the cross-section and $d A$ infinitesimal pieces of area of the cross-section. The integration is of course taken over the entire crosssectional area containing the material.)

Student name:

Student number:

Appendices

1) Periodic table

Rare earth series	57	58	59	60	61	62	63	64	65	66	67	68			
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	138.91	140.12	140.91	144.24	(145)	150.35	151.96	157.25	158.92	162.50	164.93	167.26	168.93	173.04	174.97
Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	(227)	232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

2) Equations Materials Science

Mechanical properties:

$$
\sigma=\frac{F}{A_{0}}, \quad \varepsilon=\frac{l-l_{0}}{l_{0}} \quad \text { (stress } \sigma \text { is force } F \text { divided by area } A \text {, strain } \varepsilon \text { is relative length }
$$

change.) normal stress (σ) $F \perp A$, shear stress (τ) $F / / A$

$$
\varepsilon_{/ /}=\frac{\sigma}{E}, \quad \varepsilon_{\perp}=-v \frac{\sigma}{E}
$$

E: Young's modulus (elasticity modulus),
v: Poisson's ratio (lateral contraction)
Work/Energy U: (toughness)

$$
U=\int F d s=V_{0} \int \sigma d \varepsilon
$$

Area below stress-strain curve $=$ energy uptake in the material per unit volume V_{0}
elastic: $U_{e}=\frac{V_{0}}{2} \sigma \varepsilon=\frac{V_{0}}{2} \frac{\sigma^{2}}{E}$

Student name:

Student number:

Electrical properties:

Ohm's Law: $V=I R$ (voltage $=$ current times resistance)
Resistivity: $\rho=\frac{R A}{l}$ (with A cross-section area and l length of wire); Conductivity: $\quad \sigma=\frac{1}{\rho}$
Electron conductance: $\sigma=n|e| \mu_{e}$
with n number of free (conduction) electrons per unit volume, $|e|$ the absolute charge of an electron and μ_{e} the electron mobility

Resistivity of metals:

$$
\begin{aligned}
& \rho_{\text {Total }}=\rho_{\text {Thermal }}+\rho_{\text {Im purity }}+\rho_{\text {Deformation }} \\
& \rho_{\text {Thermal }} \approx a T+b
\end{aligned}
$$

with a and b constants. For pure undeformed metals: $b \approx 0$.

Semiconductors:

An electron that can escape from the valence band to the conduction band leaves a hole behind in the valence band. For the conduction it holds:

$$
\sigma=n|e| \mu_{e}+p|e| \mu_{h}
$$

with p the number of holes and μ_{h} the mobility of the holes ($\mu_{h}<\mu_{c}$)

Intrinsic semiconductor: $\mathrm{n}=\mathrm{p}$

$$
\sigma \approx C_{1} n=C_{1} p=C_{2} \exp \left(-\frac{E_{g}}{2 k T}\right) \quad \text { with } E_{g} \text { the bandgap energy }
$$

Extrinsic semiconductor: doping with foreign atom in intrinsic semiconductor
n-type: $\mathrm{n} \gg \mathrm{p}$ by doping with +1 element, whereby +1 element acts as electron donor to conduction band:
$\sigma \approx C_{a} n=C_{b} \exp \left(-\frac{E_{g}-E_{d}}{k T}\right) \quad$ with E_{d} the energy of the donor level in the bandgap.
p-type: $\mathrm{p} \gg \mathrm{n}$ by doping with -1 element, whereby -1 element acts as electron acceptor from valence band:
$\sigma \approx C_{c} p=C_{d} \exp \left(-\frac{E_{a}}{k T}\right) \quad$ with E_{a} the energy of the acceptor level in the bandgap.

