Mock Exam of the course: Optimization in Engineering Systems

March 2023

The response should be explicit as indicated in the exam instructions

Question 1

Part (i): Consider the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{16} x_{1}^{2}+4 x_{2}^{2}+x_{1} g\left(x_{2}\right)
$$

where the scalar function $g\left(x_{2}\right)$ satisfies

$$
\frac{\partial^{2} g}{\partial x_{2}^{2}}\left(x_{2}\right)=0, \quad \forall x_{2} \in \mathbb{R}
$$

Under what additional condition on g, the function h is strictly convex?
Next, compute the minimum of h for the case $g(x)=\frac{1}{2}(x+6)$.

Part (ii): Let A be a full row-rank $m \times n$ matrix with $m<n$, and $b \in \mathbb{R}^{n}$. Then, the linear equation $A x=b$ has infinitely many solutions. Among all these solutions, we would like to find the one with minimum norm. This gives rise to the minimization problem

$$
\begin{aligned}
\operatorname{Minimize}_{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{\top} x \\
\text { s.t. } & A x=b .
\end{aligned}
$$

Compute the optimal value $\frac{1}{2}\left(x^{*}\right)^{T} x^{*}$ by maximizing the dual problem. Hint: The matrix $A A^{\top}$ is invertible.
Part (iii): Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-a\right)^{2}+x_{2}^{2}+x_{1}\left(x_{2}-a\right)+\left(x_{3}-2\right)^{2}-\gamma \ln \left(x_{3}+1\right)
$$

where a is the last digit of your student number, $\gamma \geq 0$, and $\ln (\cdot)$ denotes the natural logarithm. Write a gradient descent algorithm whose solutions converge to the minimizer of f.

Part (iv): Add the linear constraints

$$
\begin{array}{r}
x_{1}+2 x_{2}=5 \\
3 x_{2}+4 x_{3}=6
\end{array}
$$

to the problem in Part (iii). Construct a primal-dual algorithm whose solutions converge to the minimizer of f under the above constraints.

Question 2 Let the cost function of a prosumer be given by

$$
J(x)=\frac{1}{2} q_{1} x^{2}+c_{1} x
$$

and its utility function be given by

$$
U(x)=q_{2} \ln \left(x+c_{2}\right)
$$

where $c_{1}, c_{2}, q_{1}, q_{2}$ are all positive constant, and x is a scalar decision variable. The aim is to minimize the net cost $F(x)=J(x)-U(x)$. Suppose you have two processors to solve this optimization problem .

Part (i): Formulate this as a distributed optimization problem, where processor 1 uses the cost parameters c_{1} and q_{1}, and processor 2 uses parameters c_{2} and q_{2}.

Part (ii): By using the Laplacian matrix, write down a primal-dual algorithm to solve the formulated distributed optimization problem.

Part (iii): Set $q_{1}=1$, and $q_{2}=16$. Take both $c_{1}=c_{2}=c$. Compute algebraically the optimal point x^{*} minimizing $F(x)$.

Question 3 Suppose we modify a resource allocation problem as

$$
\begin{array}{r}
\operatorname{Minimize}_{p_{1}, p_{2}, p_{3}, p_{4}} \\
\text { subject to } \\
\qquad p_{1}\left(p_{1}\right)+f_{2}\left(p_{2}\right)+f_{3}\left(p_{3}\right)+\left(p_{4}-2\right)^{2}+p_{4}=d_{1}+d_{2}+d_{3}+d_{4}
\end{array}
$$

with $d_{1}=1, d_{2}=2, d_{3}=3, d_{4}=4$, where the blue terms indicate the modifications. How the distributed algorithm for the original problem should be be revised to provide a distributed solution to this modified resource allocation problem with 4 nodes? Note: (i) It is assumed a Laplacian matrix is used in both cases. (ii) You should not compute the whole revised algorithm, and instead should argue which terms should be added to the original algorithm as a result of the addition of the blue terms.

