Important instructions regarding variables in your exam: Throughout the exam you will see some variables for which values have not been assigned. These are $s d_{1}$ and $s d_{2}$. These variables depend on your student ID. The variable sd_{1} is the second last digit in your student ID. The variable sd_{2} is the last digit in your student ID. For example, if your student ID is: s1234567, then $\mathrm{sd}_{1}=6$ and $\mathrm{sd}_{2}=7$.

Problem 1: Convex analysis (10 points)

Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x):=\left|\left(\mathrm{sd}_{1}+1\right) x-\left(\mathrm{sd}_{2}+2\right)\right|
$$

where you need to substitute sd_{1} and sd_{2} with the digits in your student ID (see the first page of instructions). Calculate the subdifferntial (set of subgradients) of f at the point $\frac{\mathrm{sd}_{2}+2}{\mathrm{sd}+1}$, that is, $\partial f\left(\frac{\mathrm{sd}_{2}+2}{\mathrm{sd} \mathbf{d}_{1}+1}\right)$. Justify your answer or give the full derivation.

Problem 2: Linear programming (10 points)

Find the solution to the following linear program

$$
\begin{aligned}
\min & x_{1}-\left(2+\mathrm{sd}_{1}\right) x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq 3 \\
& -\left(\operatorname{sd}_{2}+3\right) \leq x_{1} \leq\left(\operatorname{sd}_{2}+1\right) \\
& -\left(\operatorname{sd}_{2}+1\right) \leq x_{2} \leq\left(\operatorname{sd}_{2}+2\right)
\end{aligned}
$$

Again recall that you need to substitute sd_{1} and sd_{2} with the digits in your student ID (see the first page of instructions). Does the solution change when you add another constraint to the above problem: $x_{1}+x_{2} \leq 1$ (justify your answer)?

Problem 3: Properties of two-stage problems (20 points)

Consider the second-stage problem

$$
\begin{aligned}
\min & y_{1}+y_{2} \\
\text { subject to } & y_{1} \leq x_{1}-\xi_{1} x_{2} \\
& y_{1}+y_{2} \leq x_{1}-\xi_{2} \\
& y_{1} \geq 0, y_{2} \geq 0
\end{aligned}
$$

Do the following:

1. For any $\xi=\left(\xi_{1}, \xi_{2}\right)$, compute $K_{2}(\xi)$ (see the footnote ${ }^{1}$).
[10 points]
2. Let $\xi=\left(\xi_{1}, \xi_{2}\right)$ take the following values with equal probability

$$
\{(1,1),(2,2),(4,2)\} .
$$

Then, compute K_{2} (see the footnote ${ }^{2}$).
3. Let $\xi=\left(\xi_{1}, \xi_{2}\right)$ take values $(u, 2)$ where u follows an exponential distribution with mean value equal to one. Then, compute K_{2} (see the footnote ${ }^{3}$).
[5 points]

[^0]
Problem 4: Computing EVPI and VSS (20 points)

Consider the following two-stage problem

$$
\begin{aligned}
\min & 2 x+7 \mathbb{E}_{\xi}[\max \{x-\xi,-2 x+\xi\}] \\
\text { subject to } & 0 \leq x \leq 4
\end{aligned}
$$

Note that the function inside the expectation is the max of two functions: one is $f_{1}(x)=x-\xi$ and the other is $f_{2}(x)=-2 x+\xi$ (see the footnote ${ }^{1}$).
Assume that the random variable ξ takes two values $\xi_{1}=1$ and $\xi_{2}=-1$. Let the probability distribution be given as

$$
p_{1}=\mathbb{P}\left[\xi=\xi_{1}\right]=0.4, \text { and } p_{2}=\mathbb{P}\left[\xi=\xi_{2}\right]=0.6 .
$$

Do the following

1. Determine the value of the wait-and-see solution (WS).
2. Determine the value of the recourse problem (RP).
3. Determine the expected result of using the expected value solution (EEV).
4. Using the above values, determine the expected value of perfect information (EVPI) and the value of stochastic solution (VSS).
[^1]
[^0]: ${ }^{1}$ Recall that this set is the set of first-stage decisions that ensure feasibility in the second stage for the particular uncertainty ξ.
 ${ }^{2}$ Recall that this is the set of first-stage decisions that ensure feasibility in the second stage for all realizations of the uncertainty ξ.
 ${ }^{3}$ The probability density function of an exponential distribution with mean equal to one is:

 $$
 f(x)= \begin{cases}e^{-x}, & \text { if } x \geq 0 \\ 0, & \text { if } x<0\end{cases}
 $$

[^1]: ${ }^{1}$ To elaborate more on the max of two functions, at a particular x the value that the function $f(x)=\max \{x-$ $\xi,-2 x+\xi\}$ takes is the maximum of the two values: $f_{1}(x)$ and $f_{2}(x)$. As an example, a function $g(x)=|x|$ is the max of two functions $g_{1}(x)=x$ and $g_{2}(x)=-x$.

