Important instructions regarding variables in your exam: Throughout the exam you will see some variables for which values have not been assigned. These are sd_1 and sd_2 . These variables depend on your student ID. The variable sd_1 is the second last digit in your student ID. The variable sd_2 is the last digit in your student ID. For example, if your student ID is: s1234567, then $sd_1 = 6$ and $sd_2 = 7$.

Problem 1: Convex analysis (10 points)

Consider the function $f: \mathbb{R} \to \mathbb{R}$

$$f(x) := |(\mathtt{sd}_1 + 1)x - (\mathtt{sd}_2 + 2)|$$

where you need to substitute \mathbf{sd}_1 and \mathbf{sd}_2 with the digits in your student ID (see the first page of instructions). Calculate the subdifferntial (set of subgradients) of f at the point $\frac{\mathbf{sd}_2+2}{\mathbf{sd}_1+1}$, that is, $\partial f\left(\frac{\mathbf{sd}_2+2}{\mathbf{sd}_1+1}\right)$. Justify your answer or give the full derivation.

Problem 2: Linear programming (10 points)

Find the solution to the following linear program

[8 points]

min
$$x_1 - (2 + \mathrm{sd}_1)x_2$$

subject to $x_1 - x_2 \le 3$,
 $-(\mathrm{sd}_2 + 3) \le x_1 \le (\mathrm{sd}_2 + 1)$,
 $-(\mathrm{sd}_2 + 1) \le x_2 \le (\mathrm{sd}_2 + 2)$.

Again recall that you need to substitute sd_1 and sd_2 with the digits in your student ID (see the first page of instructions). Does the solution change when you add another constraint to the above problem: $x_1 + x_2 \le 1$ (justify your answer)? [2 points]

1

Problem 3: Properties of two-stage problems (20 points)

Consider the second-stage problem

min
$$y_1 + y_2$$

subject to $y_1 \le x_1 - \xi_1 x_2,$
 $y_1 + y_2 \le x_1 - \xi_2,$
 $y_1 \ge 0, y_2 \ge 0.$

Do the following:

- 1. For any $\xi = (\xi_1, \xi_2)$, compute $K_2(\xi)$ (see the footnote¹). [10 points]
- 2. Let $\xi = (\xi_1, \xi_2)$ take the following values with equal probability

$$\{(1,1),(2,2),(4,2)\}$$

Then, compute K_2 (see the footnote²).

3. Let $\xi = (\xi_1, \xi_2)$ take values (u, 2) where u follows an exponential distribution with mean value equal to one. Then, compute K_2 (see the footnote³). [5 points]

$$f(x) = \begin{cases} e^{-x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

[5 points]

¹Recall that this set is the set of first-stage decisions that ensure feasibility in the second stage for the particular uncertainty ξ .

²Recall that this is the set of first-stage decisions that ensure feasibility in the second stage for all realizations of the uncertainty ξ .

³The probability density function of an exponential distribution with mean equal to one is:

Problem 4: Computing EVPI and VSS (20 points)

Consider the following two-stage problem

min
$$2x + 7\mathbb{E}_{\xi}[\max\{x - \xi, -2x + \xi\}]$$

subject to $0 \le x \le 4$.

Note that the function inside the expectation is the max of two functions: one is $f_1(x) = x - \xi$ and the other is $f_2(x) = -2x + \xi$ (see the footnote ¹).

Assume that the random variable ξ takes two values $\xi_1 = 1$ and $\xi_2 = -1$. Let the probability distribution be given as

$$p_1 = \mathbb{P}[\xi = \xi_1] = 0.4$$
, and $p_2 = \mathbb{P}[\xi = \xi_2] = 0.6$.

Do the following

- 1. Determine the value of the wait-and-see solution (WS). [6 points]
- 2. Determine the value of the recourse problem (RP). [6 points]
- 3. Determine the expected result of using the expected value solution (EEV). [6 points]
- 4. Using the above values, determine the expected value of perfect information (EVPI) and the value of stochastic solution (VSS). [2 points]

¹To elaborate more on the max of two functions, at a particular x the value that the function $f(x) = \max\{x - \xi, -2x + \xi\}$ takes is the maximum of the two values: $f_1(x)$ and $f_2(x)$. As an example, a function g(x) = |x| is the max of two functions $g_1(x) = x$ and $g_2(x) = -x$.