Solution guide to the mock Exam

March 2023

This solution guide is provided to cross-check your solutions, detailed explanation is omitted.

Question 1

Part (i): Consider the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{16} x_{1}^{2}+4 x_{2}^{2}+x_{1} g\left(x_{2}\right)
$$

where the scalar function $g\left(x_{2}\right)$ satisfies

$$
\frac{\partial^{2} g}{\partial x_{2}^{2}}\left(x_{2}\right)=0, \quad \forall x_{2} \in \mathbb{R}
$$

Under what additional condition on g, the function h is strictly convex?
Next, compute the minimum of h for the case $g(x)=\frac{1}{2}(x+6)$.

$$
\frac{\partial h}{\partial x}=\left[\begin{array}{c}
\frac{1}{8} x_{1}+g\left(x_{2}\right) \\
8 x_{2}+x_{1} \frac{\partial g}{x_{2}}
\end{array}\right], \quad \frac{\partial^{2} h}{\partial x^{2}}=\left[\begin{array}{cc}
\frac{1}{8} & \frac{\partial g}{x_{2}} \\
* & 8
\end{array}\right]
$$

Therefore, h is strictly convex if

$$
\left(\frac{\partial g}{x_{2}}\right)^{2} \leq 1 \Longrightarrow\left|\left(\frac{\partial g}{x_{2}}\right)\right| \leq 1
$$

As for the minimum of h, we compute

$$
\begin{gathered}
\frac{1}{8} x_{1}^{*}+\frac{1}{2} x_{2}^{*}+3=0, \quad 8 x_{2}^{*}+\frac{1}{2} x_{1}^{*}=0 \\
\Rightarrow\left(x_{1}^{*}, x_{2}^{*}\right)=(-32,2)
\end{gathered}
$$

Part (ii): Let A be a full row-rank $m \times n$ matrix with $m<n$, and $b \in \mathbb{R}^{n}$. Then, the linear equation $A x=b$ has infinitely many solutions. Among all these solutions, we would like to find the one with minimum norm. This gives rise to the minimization problem

$$
\begin{aligned}
\operatorname{Minimize}_{x \in \mathbb{R}^{n}} & \frac{1}{2} x^{\top} x \\
\text { s.t. } & A x=b .
\end{aligned}
$$

Compute the optimal value $\frac{1}{2}\left(x^{*}\right)^{T} x^{*}$ by maximizing the dual problem. Hint: The matrix $A A^{\top}$ is invertible.

$$
\mathcal{L}(x, \lambda)=\frac{1}{2} x^{T} x+\lambda^{T}(A x-b)
$$

To compute the dual function, we do

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial x}=0 \rightarrow x=-A^{T} \lambda \\
g(\lambda)=\left.\mathcal{L}(x, \lambda)\right|_{x=-A^{T} \lambda}=-\frac{1}{2} \lambda^{T} A A^{\top} \lambda-\lambda^{T} b \\
-A A^{\top} \lambda-b=0 \rightarrow \lambda^{*}=-\left(A A^{\top}\right)^{-1} b . \\
\frac{1}{2}\left(x^{*}\right)^{T} x^{*}=g\left(\lambda^{*}\right)=\cdots=\frac{1}{2} b^{T}\left(A A^{T}\right)^{-1} b
\end{gathered}
$$

Part (iii): Consider the function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-a\right)^{2}+x_{2}^{2}+x_{1}\left(x_{2}-a\right)+\left(x_{3}-2\right)^{2}-\gamma \ln \left(x_{3}+1\right)
$$

where a is the last digit of your student number, $\gamma \geq 0$, and $\ln (\cdot)$ denotes the natural logarithm. Write a gradient descent algorithm whose solutions converge to the minimizer of f.

$$
\begin{aligned}
& \dot{x}_{1}=-2\left(x_{1}-a\right)-\left(x_{2}-a\right) \\
& \dot{x}_{2}=-2 x_{2}-x_{1} \\
& \dot{x}_{3}=-2\left(x_{3}-2\right)+\frac{1}{x_{3}+1}
\end{aligned}
$$

Part (iv): Add the linear constraints

$$
\begin{array}{r}
x_{1}+2 x_{2}=5 \\
3 x_{2}+4 x_{3}=6
\end{array}
$$

to the problem in Part (iii). Construct a primal-dual algorithm whose solutions converge to the minimizer of f under the above constraints.

$$
\begin{aligned}
& \mathcal{L}(x, \lambda)=\left(x_{1}-a\right)^{2}+x_{2}^{2}+x_{1}\left(x_{2}-a\right)+\left(x_{3}-2\right)^{2}-\ln \left(x_{3}+1\right)+\lambda_{1}\left(x_{1}+2 x_{2}-5\right)+\lambda_{2}\left(3 x_{2}+4 x_{3}-6\right) \\
& \dot{x}_{1}=-2\left(x_{1}-a\right)-\left(x_{2}-a\right)-\lambda_{1} \\
& \dot{x}_{2}=-2 x_{2}-x_{1}-2 \lambda_{1}-3 \lambda_{2} \\
& \dot{x}_{3}=-2\left(x_{3}-2\right)+\frac{1}{x_{3}+1}-4 \lambda_{2} \\
& \dot{\lambda}_{1}=x_{1}+2 x_{2}-5 \\
& \dot{\lambda}_{2}=3 x_{2}+4 x_{3}-6
\end{aligned}
$$

Note: the blue terms show the new terms with respect to part (iii). It saves you time not to recalculate all the derivatives.

Question 2 Let the cost function of a prosumer be given by

$$
J(x)=\frac{1}{2} q_{1} x^{2}+c_{1} x
$$

and its utility function be given by

$$
U(x)=q_{2} \ln \left(x+c_{2}\right)
$$

where $c_{1}, c_{2}, q_{1}, q_{2}$ are all positive constant, and x is a scalar decision variable. The aim is to minimize the net cost $F(x)=J(x)-U(x)$. Suppose you have two processors to solve this optimization problem .

Part (i): Formulate this as a distributed optimization problem, where processor 1 uses the cost parameters c_{1} and q_{1}, and processor 2 uses parameters c_{2} and q_{2}.

$$
\begin{aligned}
\text { Minimize } & \frac{1}{2} q_{1} y_{1}^{2}+c_{1} y_{1}-q_{2} \log \left(y_{2}+c_{2}\right) \\
\text { s.t. } & y_{1}=y_{2}
\end{aligned}
$$

Part (ii): By using the Laplacian matrix, write down a primal-dual algorithm to solve the formulated distributed optimization problem.

$$
\begin{gathered}
L=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
\mathcal{L}(y, \lambda)=\frac{1}{2} q_{1} y_{1}^{2}+c_{1} y_{1}-q_{2} \ln \left(y_{2}+c_{2}\right)+\left[\begin{array}{ll}
\lambda_{1} & \lambda_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \\
\dot{y}_{1}=-q_{1} y_{1}-c_{1}-\left(\lambda_{1}-\lambda_{2}\right) \\
\dot{y}_{2}=+\frac{q_{2}}{y_{2}+c_{2}}+\left(\lambda_{1}-\lambda_{2}\right) \\
\dot{\lambda}_{1}=y_{1}-y_{2} \\
\dot{\lambda}_{2}=-y_{1}+y_{2}
\end{gathered}
$$

Part (iii): Set $q_{1}=1$, and $q_{2}=16$. Take both $c_{1}=c_{2}=c$. Compute algebraically the optimal point x^{*} minimizing $F(x)$.

$$
\frac{\partial F}{\partial x}\left(x^{*}\right)=0 \rightarrow \frac{16}{x^{*}+c}=x^{*}+c \Longrightarrow x^{*}=4-c
$$

Question 3 Suppose we modify a resource allocation problem as

$$
\begin{array}{r}
\operatorname{Minimize}_{p_{1}, p_{2}, p_{3}, p_{4}} \\
\text { subject to } \\
\qquad f_{1}\left(p_{1}\right)+f_{2}\left(p_{2}\right)+f_{3}\left(p_{3}\right)+\left(p_{4}-2\right)^{2} \\
p_{1}+p_{3}+p_{4}=d_{1}+d_{2}+d_{3}+d_{4}
\end{array}
$$

with $d_{1}=1, d_{2}=2, d_{3}=3, d_{4}=4$, where the blue terms indicate the modifications. How the distributed algorithm for the original problem should be be revised to provide a distributed solution to this modified resource allocation problem with 4 nodes? Note: (i) It is assumed a Laplacian matrix is used in both cases. (ii) You should not compute the whole revised algorithm, and instead should argue which terms should be added to the original algorithm as a result of the addition of the blue terms.

We consider a line graph where node 4 is connected to node 3 . Thus, the Laplace matrix of the graph becomes

$$
L=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

Therefore, two revisions are needed: Te dynamics related to node 3 should be modified (due to the addition of the link $3 \leftrightarrow 4$) and the dynamics related to node 4 must be added. The updated algorithm is given below where "..." denotes the terms in the original algorithm without the blue terms:

$$
\begin{aligned}
& \dot{p}_{1}=\ldots \\
& \dot{p}_{2}=\ldots \\
& \dot{p}_{3}=\ldots \\
& \dot{p}_{4}=-2\left(p_{4}-2\right)+\lambda_{4} \\
& \dot{\mu}_{1}=\ldots \\
& \dot{\mu}_{2}=\ldots \\
& \dot{\mu}_{3}=\ldots-\lambda_{3}+\lambda_{4} \\
& \dot{\mu}_{4}=\lambda_{3}-\lambda_{4} \\
& \dot{\lambda}_{1}=\ldots \\
& \dot{\lambda}_{2}=\ldots \\
& \dot{\lambda}_{3}=\ldots+\mu_{3}-\mu_{4} \\
& \dot{\lambda}_{4}=-\mu_{3}+\mu_{4}-p_{4}+4
\end{aligned}
$$

