
Problem: Convex analysis

This problem has three sub-parts:

1. Consider the following set

F := {(x1, x2) ∈ R2 | x1 ≤ 0 and x2 ≤ 0} ∪ {(x1, x2) ∈ R2 | x1 ≥ 0 and x2 ≥ 0},

where ∪ denotes the union operator. Is F a convex set? Justify your answer.

2. Compute the subdifferential of a function g(x) := max{2x− 6,−3x+ 9} at the point x = 3.
That is, compute ∂g(3). Hint 1

3. Is the function h(x) = −2x2 convex? Justify your answer.

Problem: Convex analysis

This problem has three sub-parts:

1. Consider the function f : R2 → R

f(x) := x>Ax,

with matrix A given as

A :=

[
sd1 − 3 0

5 sd2 + 1

]
,

where you need to substitute sd1 and sd2 with the digits in your student ID2. Is f a convex
function? Justify your answer.

2. Compute the subdifferential of a function g(x) := |3x− 6| at the point x = 2. That is,
compute ∂g(2).

3. Is the function h(x) = x4 strongly convex? Is it strictly convex? Justify your answer.

Note: Convex analysis

For additional practice problems on Convex Analysis, please look at chapter 2 and chapter 3 of
Stephen Boyd’s book on ”Convex Optimization”. Check out exercise problems at the end of the
chapters.

1To elaborate more on the max of two functions, at a particular x the value that the function g(x) = max{2x −
6,−3x+9} takes is the maximum of the two values: f1(x) and f2(x), where f1(x) = 2x− 6 and f2(x) = −3x+9. As
an example, the absolute value function g(x) = |x| is the max of two functions g1(x) = x and g2(x) = −x. It might
be helpful to plot the function g and understand how it behaves.

2The variable sd1 is the second last digit in your student ID. The variable sd2 is the last digit in your student ID.
For example, if your student ID is: s1234567, then sd1 = 6 and sd2 = 7.
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Problem: Neural networks

For a neural network you are given the following information. The input vector u is of dimension
2, that is, u = (u1, u2) ∈ R2 and the weight vector w is of dimension 20. The output is one
dimensional and the formula for the output given input and weights is given as

v(u,w) = σ
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
Answer the following:

1. How many hidden layers are there in the network? Justify your answer.

2. Draw the network showing input nodes, hidden layer nodes, output nodes, and connections.
Justify how the expression of v given above lead you to this network.

Problem: Nesterov accelerated gradient method

Consider the following function f : R3 → R given by

f(x) = ‖x‖4,

where ‖x‖ is the Euclidean norm of the vector 3. We will implement the Nesterov accelerated
gradient method and the gradient descent to minimize this function. Note first that the minimizer
of the function is x = (0, 0, 0)> and the optimal cost is zero. Do the following

1. Compute the analytical expression of the gradient of f at any point x, that is, compute
∇f(x). See hint 4.

2. Compute the bound L on the norm of the gradient over the set X = {x : ‖x‖ ≤ 1}, that is,
find an L > 0 such that

‖∇f(x)‖ ≤ L, for all x ∈ X .

3. Implement the Nesterov’s accelerated gradient method using the above calculated L (in case
you could not find L in the above part, then set L = 6) and using the initial x to be a random
vector belonging to the set X . Note that the function f is not strongly convex, so you need
to use the second Nesterov’s algorithm presented in the lecture where you need to compute
the stepsizes {γk} using the sequence {λk}. Select 100 iterations. Plot the cost function and
the ‖x‖ at each iteration of the algorithm.

4. Implement the gradient descent method with the initial condition equal to the initial condition
that you picked for the Nesterov’s accelerated gradient method in part (3) above. Use constant
step size for each iteration. Vary your step size value and pick one that gives you convergence.
Plot the cost function and the ‖x‖ at each iteration of the algorithm.

5. Compare the two methods (Nesterov’s accelerated gradient method and the gradient descent)
by plotting, in one figure, the costs and ‖x‖ for both methods. Discuss which method is better.

3Hint: The formula is ‖x‖ =
√

x2
1 + x2

2 + x2
3 where the vector x = (x1, x2, x3)

4Hint: Note that the gradient in this case means the vector

∇f(x) =


∂f(x)
∂x1

∂f(x)
∂x2

∂f(x)
∂x3


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Problem: Sample average approximation

Consider the following stochastic optimization problem

min f(x) (1a)

subject to x ≥ 0, (1b)

where the function f : R2 → R is given as

f(x) = x>
[
2 0
0 4

]
x− E[u]

[
8
16

]>
x,

and u is a real-valued (scalar) random variable uniformly distributed over the interval [0, 1]. Here,
note that x is two-dimensional, that is, x ∈ R2. The inequality x ≥ 0 implies that both components
of the vector x are non-negative. Do the following:

1. Find the optimizer x∗ and the optimal value f(x∗) of the optimization problem (1). Use the
CVX toolbox if necessary.

2. Find the sample average approximate solution of the problem taking N = 15 i.i.d samples
of the uncertainty u (you can use the rand function in MATLAB to do this). Repeat this
approximation 100 times. For each of the sample average approximation solution, calculate

‖x̂N − x∗‖,

where x̂N is the solution of the sample average approximation scheme and x∗ is the solution
of the stochastic optimization problem (1). Plot the cumulative distribution function of
‖x̂N − x∗‖. Discuss your findings.5

3. Repeat the above part with N = 50 i.i.d samples for the uncertainty (keeping the number
of runs to be 100). What difference do you notice in the cumulative distribution function as
compared to the case of N = 15 samples? Discuss your findings.

Problem: True/false

Identify the following statements to be true or false. Justify your answer.

1. Every run of a stochastic gradient descent algorithm with the same initial condition and the
same step sizes might create different iterate values.

2. Larger the value of the margin of a learned hyperplane in a support vector machine based
classification example, worse is the separation between the classes.

3. For any given online optimization algorithm, bigger is the class of functions from which costs
are selected by the “environment”, bigger is the regret incurred by the algorithm.

5Note that for a vector v ∈ R2, the notation ‖v‖ means the Euclidean 2-norm. That is, ‖v‖ =
√

v21 + v22 .
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Problem: True/false

Identify the following statements to be true or false. Justify your answer.

1. The following set is convex:

F := {x ∈ R2 | x1 + x2 = 1, x1 ≥ 0, and x2 ≥ 0}.

2. Consider the following two chance-constrained optimization problems (as studied in lecture
7)

min c(x)
(Problem 1) subject to P(g(x, ξ) ≤ 0) ≥ 1− α1

x ∈ X ,

and

min c(x)
(Problem 2) subject to P(g(x, ξ) ≤ 0) ≥ 1− α2

x ∈ X .

The difference between the two problems is the probability with which the uncertain constraint
g(x, ξ) ≤ 0 is required to hold. In Problem 1, this value is 1 − α1 and in Problem 2, it is
1 − α2. We have the following statement: if 0 < α1 ≤ α2 < 1, then the optimal value of
Problem 1 is not higher than the optimal value of Problem 2.

3. In a classification problem over input u = (u1, u2) of two dimensions, you ended up with the
learned separating hyperplane as u1 = 0 (that is, the vertical axis in the (u1, u2) plane. All
points u = (u1, u2) with u1 > 0 are assigned class “1” and points with u1 < 0 as “ − 1”.
Suppose the point closest to the separating hyperplane in the set of points in class “1” is
(2, 5) and the point closest to the separating hyperplane in the set of points in class “− 1” is
(−1.5, 4). Then, the margin value is 1.5.
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