
Calculus 2 (IEM)

Midterm Exam II
The 18th of March, 2022

� This exam consists of four problems, worth a total of 45 points.

� You also get five bonus points, so your total number of points will be
between 5 and 50. Your final score will be your total number of points
divided by 5.

� You must give complete arguments and computations and avoid leaps in
logic to get full points.

� Write your full name and student number in the upper right corner of
every sheet you want graded.

� Clearly mark which problem you are solving on each page.

1 Let F (x, y) = x5y5 − x3y4 + 2022.

a. Find ∂3F
∂x3 . [4 points]

b. Find ∂2F
∂y2 . [4 points]

c. Give an equation for the plane tangent to the surface given by F at
the point (1, 1, F (1, 1)). [7 points]

Solution:

a. ∂3F
∂x3 = 5 · 4 · 3x2y5 − 3 · 2 · 1 · y4 + 0 = 60x2y5 − 6y4.

b. ∂2F
∂y2 = x5 · 5 · 4y3 − x3 · 4 · 3y2 + 0 = 20x4y3 − 12x3y2.

c. A formula for a vector that is perpendicular to the plane tangent to
the surface given by F at the point (1, 1, F (1, 1)) is

− ∂F

∂x
(1, 1)i− ∂F

∂y
(1, 1)j+ k = (−5 · 14 · 15 + 3 · 12 · 14)i

+ (−5 · 15 · 14 + 4 · 13 · 13)j+ k

= ⟨−2,−2, 1⟩.

We thus find that an equation for the plane tangent to the surface
given by F at the point (1, 1, F (1, 1)) is

z = F (1, 1) +
∂F

∂x
(1, 1)(x− 1) +

∂F

∂y
(1, 1)(y − 1)

= 2022 + 2(x− 1) + (y − 1).
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2 Let

F (x, y, z) = (y + z) lnx+ xy2z3 − 4.

Consider the surface described by the equation F (x, y, z) = 0. Find a
nonzero vector that is perpendicular to that surface at the point (1, 2, 1)
(that lies on the surface). [4 points]
Solution: Consider any curve on the surface through the point (1, 2, 1)
with parametrisation (x(t), y(t), z(t)). Then F (x(t), y(t), z(t)) = 0 and by
the chain rule

0 =
∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
+

∂F

∂
z
dz

dt

=

(
y + z

x
+ y2z3

)
dx

dt
+
(
lnx+ 2xyz3

) dy
dt

+
(
lnx+ 3xy2z2

) dz
dt

,

which means that

∇F (1, 2, 1) = ⟨7, 4, 12⟩

is perpendicular to 〈
dx

dt
,
dy

dt
,
dz

dt

〉
for whatever t the curve goes through (1, 2, 1). As this holds true for
any such curve on the surface, this means that ∇F (1, 2, 1) = ⟨7, 4, 12⟩ is
perpendicular to the surface at the point (1, 2, 1).

3 Let g(x, y) = xy + 2
x +

4
y + 10.

a. Find all stationary points of g. [4 points]

b. Find the directional derivative Dug(1, 1) for any unit vector
u = (cos θ, sin θ), θ ∈ [0, 2π). [4 points]

c. Check for each stationary point in part a. whether it corresponds to
a local maximum, a local minimum, or a saddle point. [4 points]

a. Solution: The stationary points of g are those points (x, y) for which
∂g
∂x = ∂g

∂y = 0.
Note that

∂g

∂x
= y − 2

x2
+ 0 and

∂g

∂y
= x+ 0− 4

y2
,

so ∂g
∂x = ∂g

∂y = 0 if and only if y = 2
x2 and x = 4

y2 , if and only if x = 1
and y = 2, so the only stationary point of g is (1, 2).
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b. Solution: The directional derivative Dug(1, 1) for any unit vector
u = ⟨cos θ, sin θ⟩ by part a. is

∇g(x, y)|(x,y)=(1,1) · u =

〈
∂g

∂x
(1, 1),

∂g

∂y
(1, 1)

〉
· ⟨cos θ, sin θ⟩T

= ⟨−1,−3⟩ · ⟨cos θ, sin θ⟩T

= − cos θ − 3 sin θ.

c. Solution 1: The only stationary point in part a. was (1, 2), for which
we have that

∂2g

∂x2

∣∣∣∣
(x,y)=(1,2)

=
4

x3

∣∣∣∣
(x,y)=(1,2)

= 4,

∂2g

∂y2

∣∣∣∣
(x,y)=(1,2)

=
8

y3

∣∣∣∣
(x,y)=(1,2)

= 1

and

∂2g

∂x∂y

∣∣∣∣
(x,y)=(1,2)

= 1|(x,y)=(1,2) = 1.

As the determinant of the Hessian is 4 · 1− 1 · 1, which is positive and
as gxx(2, 1) > 0, we have that g(1, 2) is a local minimum value of g.
Solution 2: The only stationary point in part a. was (1, 2), for which
we have that

∂2g

∂x2

∣∣∣∣
(x,y)=(1,2)

=
4

x3

∣∣∣∣
(x,y)=(1,2)

= 4,

∂2g

∂y2

∣∣∣∣
(x,y)=(1,2)

=
8

y3

∣∣∣∣
(x,y)=(1,2)

= 1

and

∂2g

∂x∂y

∣∣∣∣
(x,y)=(1,2)

= 1|(x,y)=(1,2) = 1,

so as

u2
∂2g

∂x2

∣∣∣∣
(x,y)=(1,2)

+ 2uv
∂2g

∂x∂y

∣∣∣∣
(x,y)=(1,2)

+ v2
∂2g

∂y2

∣∣∣∣
(x,y)=(1,2)

= 4u2 + 2 · 1 · uv + 1 · v2 ≥ u2 + 2uv + v2 = (u+ v)2 > 0

for all u, v ∈ R, u, v not both zero, we have that g(1, 2) is a local
minimum value of g.
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4 Let x ∈ R and let t > 0. Let u(x, t) solve the partial differential equation

c2uxx − utt = 0,

where c ∈ R is a constant. This equation is called the wave equation and
models many wave-like phenomena in for example physics and chemistry.

a. Let v(ξ, η) = u(x, t), where ξ = x + ct and η = x − ct. Prove that in
that case vξη = 0. [6 points]

b. Prove that v(ξ, η) = f(ξ) + g(η) for some twice differentiable single
variable functions f , g. [6 points]

c. Prove that u(x, t) = f(x + ct) + g(x − ct), where f and g are the
functions from part b. [2 points]

Solution:

a. Proof: By the chain rule we have that

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂ξ

∂ξ

∂x
+

∂v

∂η

∂η

∂x

)
=

∂

∂x

(
∂v

∂ξ
· 1 + ∂v

∂η
· 1
)

= vξξ + 2vξη + vηη

and

∂2u

∂t2
=

∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
∂v

∂ξ

∂ξ

∂t
+

∂v

∂η

∂η

∂t

)
=

∂

∂t

(
∂v

∂ξ
· c− ∂v

∂η
· c
)

= c2(vξξ − 2vξη + vηη),

so the wave equation can be rewritten as

0 = c2uxx − utt = c2 (vξξ + 2vξη + vηη)− c2(vξξ − 2vξη + vηη)

= 4c2vξη,

which proves, because c ̸= 0, that indeed vξη = 0. q.e.d.

b. Proof: Because of part a. we have that vξη = 0 and that the
partial derivative with respect to η of vξ is zero, so that means that
vξ(ξ, η) = h(ξ) for any scalar, differentiable function h : R → R.
Because vξ then only depends on ξ, that means that for any scalar,
differentiable function g : R → R we have that v(ξ, η) = H(ξ) + g(η),
with H ′ = h. So choosing f = H, we then find that indeed there are
scalar, differentiable functions f , g such that v(ξ, η) = f(ξ) + g(η).
q.e.d.

c. Proof: Because of part b. we have that v(ξ, η) = f(ξ) + g(η).
As u(x, t) = v(ξ, η), ξ = x+ ct and η = x− ct, this means that
u(x, t) = f(x+ ct) + g(x− ct). q.e.d.
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