Calculus 2 (IEM)

Midterm Exam II
The 18th of March, 2022

- This exam consists of four problems, worth a total of 45 points.
- You also get five bonus points, so your total number of points will be between 5 and 50 . Your final score will be your total number of points divided by 5 .
- You must give complete arguments and computations and avoid leaps in logic to get full points.
- Write your full name and student number in the upper right corner of every sheet you want graded.
- Clearly mark which problem you are solving on each page.

1 Let $F(x, y)=x^{5} y^{5}-x^{3} y^{4}+2022$.
a. Find $\frac{\partial^{3} F}{\partial x^{3}}$. [4 points]
b. Find $\frac{\partial^{2} F}{\partial y^{2}}$. [4 points]
c. Give an equation for the plane tangent to the surface given by F at the point $(1,1, F(1,1))$. [7 points]

Solution:

a. $\frac{\partial^{3} F}{\partial x^{3}}=5 \cdot 4 \cdot 3 x^{2} y^{5}-3 \cdot 2 \cdot 1 \cdot y^{4}+0=60 x^{2} y^{5}-6 y^{4}$.
b. $\frac{\partial^{2} F}{\partial y^{2}}=x^{5} \cdot 5 \cdot 4 y^{3}-x^{3} \cdot 4 \cdot 3 y^{2}+0=20 x^{4} y^{3}-12 x^{3} y^{2}$.
c. A formula for a vector that is perpendicular to the plane tangent to the surface given by F at the point $(1,1, F(1,1))$ is

$$
\begin{aligned}
& -\frac{\partial F}{\partial x}(1,1) \mathbf{i}-\frac{\partial F}{\partial y}(1,1) \mathbf{j}+\mathbf{k}=\left(-5 \cdot 1^{4} \cdot 1^{5}+3 \cdot 1^{2} \cdot 1^{4}\right) \mathbf{i} \\
& +\left(-5 \cdot 1^{5} \cdot 1^{4}+4 \cdot 1^{3} \cdot 1^{3}\right) \mathbf{j}+\mathbf{k} \\
& =\langle-2,-2,1\rangle .
\end{aligned}
$$

We thus find that an equation for the plane tangent to the surface given by F at the point $(1,1, F(1,1))$ is

$$
\begin{aligned}
z & =F(1,1)+\frac{\partial F}{\partial x}(1,1)(x-1)+\frac{\partial F}{\partial y}(1,1)(y-1) \\
& =2022+2(x-1)+(y-1) .
\end{aligned}
$$

2 Let

$$
F(x, y, z)=(y+z) \ln x+x y^{2} z^{3}-4 .
$$

Consider the surface described by the equation $F(x, y, z)=0$. Find a nonzero vector that is perpendicular to that surface at the point $(1,2,1)$ (that lies on the surface). [4 points]
Solution: Consider any curve on the surface through the point ($1,2,1$) with parametrisation $(x(t), y(t), z(t))$. Then $F(x(t), y(t), z(t))=0$ and by the chain rule

$$
\begin{aligned}
0 & =\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}+\frac{\partial F}{\partial} z \frac{d z}{d t} \\
& =\left(\frac{y+z}{x}+y^{2} z^{3}\right) \frac{d x}{d t}+\left(\ln x+2 x y z^{3}\right) \frac{d y}{d t}+\left(\ln x+3 x y^{2} z^{2}\right) \frac{d z}{d t}
\end{aligned}
$$

which means that

$$
\nabla F(1,2,1)=\langle 7,4,12\rangle
$$

is perpendicular to

$$
\left\langle\frac{d x}{d t}, \frac{d y}{d t}, \frac{d z}{d t}\right\rangle
$$

for whatever t the curve goes through $(1,2,1)$. As this holds true for any such curve on the surface, this means that $\nabla F(1,2,1)=\langle 7,4,12\rangle$ is perpendicular to the surface at the point $(1,2,1)$.
$\sqrt{3}$ Let $g(x, y)=x y+\frac{2}{x}+\frac{4}{y}+10$.
a. Find all stationary points of g. [4 points]
b. Find the directional derivative $D_{\mathbf{u}} g(1,1)$ for any unit vector $\mathbf{u}=(\cos \theta, \sin \theta), \theta \in[0,2 \pi) .[4$ points]
c. Check for each stationary point in part a. whether it corresponds to a local maximum, a local minimum, or a saddle point. [4 points]
a. Solution: The stationary points of g are those points (x, y) for which $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0$.
Note that

$$
\frac{\partial g}{\partial x}=y-\frac{2}{x^{2}}+0 \text { and } \frac{\partial g}{\partial y}=x+0-\frac{4}{y^{2}},
$$

so $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0$ if and only if $y=\frac{2}{x^{2}}$ and $x=\frac{4}{y^{2}}$, if and only if $x=1$ and $y=2$, so the only stationary point of g is $(1,2)$.
b. Solution: The directional derivative $D_{\mathbf{u}} g(1,1)$ for any unit vector $\mathbf{u}=\langle\cos \theta, \sin \theta\rangle$ by part a. is

$$
\begin{aligned}
\left.\nabla g(x, y)\right|_{(x, y)=(1,1)} \cdot \mathbf{u} & =\left\langle\frac{\partial g}{\partial x}(1,1), \frac{\partial g}{\partial y}(1,1)\right\rangle \cdot\langle\cos \theta, \sin \theta\rangle^{T} \\
& =\langle-1,-3\rangle \cdot\langle\cos \theta, \sin \theta\rangle^{T} \\
& =-\cos \theta-3 \sin \theta
\end{aligned}
$$

c. Solution 1: The only stationary point in part a. was $(1,2)$, for which we have that

$$
\begin{aligned}
\left.\frac{\partial^{2} g}{\partial x^{2}}\right|_{(x, y)=(1,2)} & =\left.\frac{4}{x^{3}}\right|_{(x, y)=(1,2)}=4, \\
\left.\frac{\partial^{2} g}{\partial y^{2}}\right|_{(x, y)=(1,2)} & =\left.\frac{8}{y^{3}}\right|_{(x, y)=(1,2)}=1
\end{aligned}
$$

and

$$
\left.\frac{\partial^{2} g}{\partial x \partial y}\right|_{(x, y)=(1,2)}=\left.1\right|_{(x, y)=(1,2)}=1
$$

As the determinant of the Hessian is $4 \cdot 1-1 \cdot 1$, which is positive and as $g_{x x}(2,1)>0$, we have that $g(1,2)$ is a local minimum value of g. Solution 2: The only stationary point in part a. was $(1,2)$, for which we have that

$$
\begin{aligned}
& \left.\frac{\partial^{2} g}{\partial x^{2}}\right|_{(x, y)=(1,2)}=\left.\frac{4}{x^{3}}\right|_{(x, y)=(1,2)}=4, \\
& \left.\frac{\partial^{2} g}{\partial y^{2}}\right|_{(x, y)=(1,2)}=\left.\frac{8}{y^{3}}\right|_{(x, y)=(1,2)}=1
\end{aligned}
$$

and

$$
\left.\frac{\partial^{2} g}{\partial x \partial y}\right|_{(x, y)=(1,2)}=\left.1\right|_{(x, y)=(1,2)}=1
$$

so as

$$
\begin{aligned}
& \left.u^{2} \frac{\partial^{2} g}{\partial x^{2}}\right|_{(x, y)=(1,2)}+\left.2 u v \frac{\partial^{2} g}{\partial x \partial y}\right|_{(x, y)=(1,2)}+\left.v^{2} \frac{\partial^{2} g}{\partial y^{2}}\right|_{(x, y)=(1,2)} \\
& =4 u^{2}+2 \cdot 1 \cdot u v+1 \cdot v^{2} \geq u^{2}+2 u v+v^{2}=(u+v)^{2}>0
\end{aligned}
$$

for all $u, v \in \mathbb{R}, u, v$ not both zero, we have that $g(1,2)$ is a local minimum value of g.

54 Let $x \in \mathbb{R}$ and let $t>0$. Let $u(x, t)$ solve the partial differential equation

$$
c^{2} u_{x x}-u_{t t}=0
$$

where $c \in \mathbb{R}$ is a constant. This equation is called the wave equation and models many wave-like phenomena in for example physics and chemistry.
a. Let $v(\xi, \eta)=u(x, t)$, where $\xi=x+c t$ and $\eta=x-c t$. Prove that in that case $v_{\xi \eta}=0$. [6 points]
b. Prove that $v(\xi, \eta)=f(\xi)+g(\eta)$ for some twice differentiable single variable functions f, g. [6 points]
c. Prove that $u(x, t)=f(x+c t)+g(x-c t)$, where f and g are the functions from part b. [2 points]

Solution:

a. Proof: By the chain rule we have that

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial x}+\frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial \xi} \cdot 1+\frac{\partial v}{\partial \eta} \cdot 1\right) \\
& =v_{\xi \xi}+2 v_{\xi \eta}+v_{\eta \eta}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial v}{\partial \xi} \frac{\partial \xi}{\partial t}+\frac{\partial v}{\partial \eta} \frac{\partial \eta}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial v}{\partial \xi} \cdot c-\frac{\partial v}{\partial \eta} \cdot c\right) \\
& =c^{2}\left(v_{\xi \xi}-2 v_{\xi \eta}+v_{\eta \eta}\right)
\end{aligned}
$$

so the wave equation can be rewritten as

$$
\begin{aligned}
0 & =c^{2} u_{x x}-u_{t t}=c^{2}\left(v_{\xi \xi}+2 v_{\xi \eta}+v_{\eta \eta}\right)-c^{2}\left(v_{\xi \xi}-2 v_{\xi \eta}+v_{\eta \eta}\right) \\
& =4 c^{2} v_{\xi \eta}
\end{aligned}
$$

which proves, because $c \neq 0$, that indeed $v_{\xi \eta}=0$. q.e.d.
b. Proof: Because of part a. we have that $v_{\xi \eta}=0$ and that the partial derivative with respect to η of v_{ξ} is zero, so that means that $v_{\xi}(\xi, \eta)=h(\xi)$ for any scalar, differentiable function $h: \mathbb{R} \rightarrow \mathbb{R}$. Because v_{ξ} then only depends on ξ, that means that for any scalar, differentiable function $g: \mathbb{R} \rightarrow \mathbb{R}$ we have that $v(\xi, \eta)=H(\xi)+g(\eta)$, with $H^{\prime}=h$. So choosing $f=H$, we then find that indeed there are scalar, differentiable functions f, g such that $v(\xi, \eta)=f(\xi)+g(\eta)$. q.e.d.
c. Proof: Because of part b. we have that $v(\xi, \eta)=f(\xi)+g(\eta)$. As $u(x, t)=v(\xi, \eta), \xi=x+c t$ and $\eta=x-c t$, this means that $u(x, t)=f(x+c t)+g(x-c t)$. q.e.d.

