Calculus 2 (IEM)

Midterm Exam II
The 18th of March, 2022

e This exam consists of four problems, worth a total of 45 points.

e You also get five bonus points, so your total number of points will be
between 5 and 50. Your final score will be your total number of points
divided by 5.

e You must give complete arguments and computations and avoid leaps in
logic to get full points.

e Write your full name and student number in the upper right corner of
every sheet you want graded.

e Clearly mark which problem you are solving on each page.

Let F(z,y) = 2°y° — 23y* + 2022.
a. Find 2£. [4 points]

03
Find ?9271;' [4 points]
c. Give an equation for the plane tangent to the surface given by F' at
the point (1,1, F(1,1)). [7 points]

Solution:

OL —5.4-32%° —3-2-1-y* +0 = 602%y° — 6™
08 =25 4y° — 2% -4 3y + 0 = 202"y — 12072

c. A formula for a vector that is perpendicular to the plane tangent to
the surface given by F' at the point (1,1, F'(1,1)) is

oF oF

(1. 1D)i- =—(1.1Dj+k=(=5-1*1°+3-1%2.1%i
8:1:(’)1 ay(’)” ( + )i
+(=5-1°-1"+4-1°-1%j+ k

= (=2, -2,1).

We thus find that an equation for the plane tangent to the surface

given by F' at the point (1,1, F'(1,1)) is
oF OF
S = F(L1)+ 50D - )+ )y - D

=2022+2(x—1)+ (y — 1).
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Let
F(z,y,2) = (y + 2) Inz + zy°2° — 4.

Consider the surface described by the equation F(z,y,z) = 0. Find a
nonzero vector that is perpendicular to that surface at the point (1,2,1)
(that lies on the surface). [4 points]

Solution: Consider any curve on the surface through the point (1,2, 1)
with parametrisation (z(t),y(t), 2(t)). Then F(z(t),y(t), 2(t)) = 0 and by
the chain rule

OF dx OF dy 8F dz

Drdt oydt 0 dt
y—+z 5 3\ dx 3\ Ay
:( - +yz)E+(lnx+2xyz)dt (lnx+3xyz)

which means that

0=

dz
dt’

VF(1,2,1) = (7,4,12)

dx dy dz
dt’ dt’ dt
for whatever ¢ the curve goes through (1,2,1). As this holds true for

any such curve on the surface, this means that VF(1,2,1) = (7,4,12) is
perpendicular to the surface at the point (1,2,1).

is perpendicular to

Let g(x,y) :xy+%+§+ 10.
a. Find all stationary points of g. [4 points]

b. Find the directional derivative Dyg(1, 1) for any unit vector
u = (cosf,sinf), 6 € [0,27). [4 points]

c. Check for each stationary point in part a. whether it corresponds to
a local maximum, a local minimum, or a saddle point. [4 points]

a. Solution: The stationary points of g are those points (x, %) for which

dg __ 8g_0

ox — Oy

Note that
dg 2 dg 4
L =y——+0 d—— 0—
B Y ; U an ay T+

sogg—az—()lfandonlylfy— 2 and z =

and y = 2, so the only stationary point of g is

if and only if x =1

2).

4
Y2
(1,
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Solution: The directional derivative Dyg(1,1) for any unit vector
u = (cos,sinf) by part a. is

dg dg T
Vo) u = {10 5500 ) - (costsing)

= (—1,-3) - (cosf,sin )"

= —cosf — 3sin 6.

Solution 1: The only stationary point in part a. was (1, 2), for which
we have that

0%qg A _ 4
922 = =4
(.’L‘,y):(l,Q) (.’L‘,y):(l,Q)
0%¢g 8 _1q
0y y B
(xvy):(LQ) (x’y):(LZ)
and
0%g
=1, = L.
dxdy (o4)=(12) (z.y)=(1,2)

As the determinant of the Hessian is 4-1 —1-1, which is positive and
as gz+(2,1) > 0, we have that g(1,2) is a local minimum value of g.
Solution 2: The only stationary point in part a. was (1, 2), for which
we have that

0%qg A _ 4
92 = =4
(Z‘,y):(l,Q) ('T7y):(1 2)
0%g 8 _1
o2 R B
(z,y)=(1,2) (z,y)=(1,2)
and
0%g
= 1| x,y)= - 17
0x0Y| (=12 (z.y)=(1,2)
SO as
62 32 62
u? a—g + 2uv B 89 + 02 8—2
T (2 y)=(12) TOY(2)=(12) Y l@wy)=(1,2)

=4t +2 1 -uww+1-0* >+ 2w+ 0 = (u+v)? >0

for all u, v € R, u, v not both zero, we have that g(1,2) is a local
minimum value of g.
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Let x € R and let ¢t > 0. Let u(z,t) solve the partial differential equation

2
C Upy — Uy = 0,

where ¢ € R is a constant. This equation is called the wave equation and
models many wave-like phenomena in for example physics and chemistry.

a. Let v(&,n) = u(z,t), where £ = x + ¢t and n = z — ct. Prove that in
that case vg, = 0. [6 points]

b. Prove that v(£,n) = f(&) + g(n) for some twice differentiable single
variable functions f, g. [6 points]

c. Prove that u(x,t) = f(x + ct) + g(x — ct), where f and g are the
functions from part b. [2 points]

Solution:

a. Proof: By the chain rule we have that

Pu_ 0 (u\ _ 0 (000 ovon) _ 0 (v | o
0x2  Ox \Ox) 0Ox \060xr Ondx) Oz \0¢ on
= Vgg + 20¢y + Uy
and
Pu_ 0 (u\ _ 0 (000c v\ _ 0 (v du
o2 ot\ot) ot\ocot omot) ot \o¢ on
= ¢ (vge — 2vgy + Uyy),
so the wave equation can be rewritten as
0= gy — uy = ¢ (vgg + 20g) + vyy) — ¢ (vge — 20gy + V)
= 4021)5,,,
which proves, because ¢ # 0, that indeed vg, = 0. g.e.d.

b. Proof:  Because of part a. we have that v, = 0 and that the
partial derivative with respect to ) of v¢ is zero, so that means that
ve(€,m) = h(§) for any scalar, differentiable function h : R — R.
Because v¢ then only depends on &, that means that for any scalar,
differentiable function g : R — R we have that v(£,n) = H(E) + g(n),
with H' = h. So choosing f = H, we then find that indeed there are
scalar, differentiable functions f, g such that v(¢,n) = f(£) + g(n).
qg.e.d.

c. Proof: Because of part b. we have that v(£,n) = f(§) + g(n).

As u(x,t) =v(&,n), £ =+ ct and n = x — ct, this means that
u(z,t) = f(r+ct) +g(x —ct). ge.d
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