Calculus 2 (IEM)

Midterm Exam I
4 March 2022

- This exam consists of four problems, worth a total of $\mathbf{9}$ points.
- You also get one bonus point, so your final score will be 1-10.
- You must give complete arguments and computations and avoid leaps in logic to get full points.
- Write your full name and student number in the upper right corner of every sheet you want graded.
- Clearly mark which problem you are solving on each page.

Remark: Throughout this text I will use double bars to indicate the length of a vector, i.e. for any vector \mathbf{v} I will write the length of \mathbf{v} as $\|\mathbf{v}\|$.

1 (2 pt) Consider the function

$$
\mathbf{r}(t)=\frac{t}{t+\sin (t)} \mathbf{i}+\frac{t}{e^{t}-1} \mathbf{j} .
$$

Determine the limit $\lim _{t \rightarrow 0} \mathbf{r}(t)$ or explain why it does not exist.
Solution: By L'Hôpital's rule we have that

$$
\begin{aligned}
\lim _{t \rightarrow 0} \mathbf{r}(t) & =\lim _{t \rightarrow 0} \frac{t}{t+\sin (t)} \mathbf{i}+\frac{t}{e^{t}-1} \mathbf{j}=\lim _{t \rightarrow 0} \frac{(t)^{\prime}}{(t+\sin (t))^{\prime}} \mathbf{i}+\frac{(t)^{\prime}}{\left(e^{t}-1\right)^{\prime}} \mathbf{j} \\
& =\lim _{t \rightarrow 0} \frac{1}{1+\cos (t)} \mathbf{i}+\frac{1}{e^{t}} \mathbf{j}=\frac{1}{2} \mathbf{i}+\mathbf{j} .
\end{aligned}
$$

22 (2 pt) Consider the curves C_{1} and C_{2}, respectively given by parametrizations

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =\left(\arctan (t), t^{2}\right), \\
\mathbf{r}_{2}(u) & =\left(u^{2}-u, u^{2}+u\right) .
\end{aligned}
$$

a) Show that $(0,0)$ is a point of intersection of C_{1} and C_{2}.
b) Determine the angle at which C_{1} and C_{2} intersect at $(0,0)$.

Hint: The angle between two curves at an intersection is the angle between their tangents at that point, assuming they exist.
a) Proof: Note that $\mathbf{r}_{1}(0)=\left(\arctan (0), 0^{2}\right)=(0,0)$ and that $\mathbf{r}_{2}(0)=$ $\left(0^{2}-0,0^{2}+0\right)=(0,0)$. So $(0,0)$ lies on both C_{1} and C_{2} and we have thus proven that $(0,0)$ is a point of intersection of C_{1} and C_{2}. q.e.d.
b) Solution: From part a) we know that $\mathbf{r}_{1}(0)=\mathbf{r}_{2}(0)=(0,0)$. Note that

$$
\mathbf{r}_{1}^{\prime}(t)=\left(\frac{1}{1+t^{2}}, 2 t\right) \text { and } \mathbf{r}_{2}^{\prime}(u)=(2 u-1,2 u+1) .
$$

So $\mathbf{r}_{1}^{\prime}(0)=\left(\frac{1}{1+0^{2}}, 0\right)=(1,0)$ and $\mathbf{r}_{2}^{\prime}(0)=(0-1,0+1)=(-1,1)$. As $\mathbf{r}_{1}^{\prime}(0)$ has length 1 and $\mathbf{r}_{2}^{\prime}(0)$ has length $\sqrt{2}$, we have that if θ is the angle at which C_{1} and C_{2} intersect at $(0,0)$, then $\cos \theta=\frac{1}{\sqrt{2}} \mathbf{r}_{1}^{\prime}(0) \cdot \mathbf{r}_{2}^{\prime}(0)=$ $-\frac{1}{\sqrt{2}}$, so $\theta=\frac{3}{4} \pi$. So the angle at which C_{1} and C_{2} intersect at $(0,0)$ is $\frac{3}{4} \pi$.

3 (3 pt) The position of a particle at time $t \in[1,4]$ is given by

$$
\mathbf{r}(t)=\left(t^{2}+4 t\right) \mathbf{i}+\left(t^{2}-4 t\right) \mathbf{j}+\frac{t^{3}+6 t}{3} \mathbf{k}
$$

Determine the following:
a) The length of the path traversed by the particle.
b) The curvature of the particle's path at $t=2$.
c) The tangential and normal components of acceleration of the particle at $t=2$.
a) Solution: The length of the path traversed by the particle is

$$
\begin{aligned}
\int_{1}^{4}\left\|\mathbf{r}^{\prime}(t)\right\| d t & =\int_{1}^{4} \sqrt{\left(\left(t^{2}+4 t\right)^{\prime}\right)^{2}+\left(\left(t^{2}-4 t\right)^{\prime}\right)^{2}+\left(\left(\frac{t^{3}+6 t}{3}\right)^{\prime}\right)^{2}} d t \\
& =\int_{1}^{4} \sqrt{(2 t+4)^{2}+(2 t-4)^{2}+\left(t^{2}+2\right)^{2}} d t \\
& =\int_{1}^{4} \sqrt{t^{4}+12 t^{2}+36} d t=\int_{1}^{4} \sqrt{\left(t^{2}+6\right)^{2}} d t \\
& =\int_{1}^{4}\left(t^{2}+6\right) d t=\left[\frac{1}{3} t^{3}+6 t\right]_{1}^{4}=21+18=39
\end{aligned}
$$

b) Solution: The curvature κ of the particle's path at t is by the calculation in part a) equal to

$$
\begin{aligned}
\kappa & =\frac{\left\|\mathbf{r}^{\prime \prime}(t) \times \mathbf{r}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}=\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 t+4 & 2 t-4 & t^{2}+2 \\
2 & 2 & 2 t
\end{array}\right\| \| \\
& =\frac{1}{\left(t^{2}+6\right)^{3}}\left(\left(2 t^{2}-8 t-4\right)^{2}+\left(2 t^{2}+8 t-4\right)^{2}+(16)^{2}\right)^{\frac{1}{2}} \\
& =\frac{1}{\left(t^{2}+6\right)^{3}}\left(8\left(t^{2}+6\right)^{2}\right)^{\frac{1}{2}}=\frac{2 \sqrt{2}}{\left(t^{2}+6\right)^{2}}
\end{aligned}
$$

So the curvature of the particle's path at $t=2$ is

$$
\frac{2 \sqrt{2}}{\left(2^{2}+6\right)^{2}}=\frac{1}{50} \sqrt{2} .
$$

c) The tangential component of the acceleration is by the calculation in part a) and b) equal to

$$
\frac{\mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t)}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{2(2 t+4)+2(2 t-4)+2 t\left(t^{2}+2\right)}{t^{2}+6}=2 t
$$

and the normal component of the acceleration is by the calculation in part a) and b) equal to

$$
\frac{\left\|\mathbf{r}^{\prime \prime}(t) \times \mathbf{r}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=2 \sqrt{2}
$$

so the tangential and normal components of acceleration of the particle at $t=2$ are

$$
\frac{\mathbf{r}^{\prime \prime}(2) \cdot \mathbf{r}^{\prime}(2)}{\left\|\mathbf{r}^{\prime}(2)\right\|}=4 \text { and } \frac{\left\|\mathbf{r}^{\prime \prime}(2) \times \mathbf{r}^{\prime}(2)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=2 \sqrt{2}
$$

respectively.

4 (2 pt) Determine the following limit or explain why it does not exist:
a) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{3} \sin (y)}{x^{2}+y^{4}}$,
b) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{3}+x y+y^{3}}{x^{3}-x y+y^{3}}$.

Solution:

a) We have that

$$
\begin{aligned}
\left.\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{x^{3} \sin (y)}{x^{2}+y^{4}} \right\rvert\, & =\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}}\left|\frac{x^{3} \sin (y)}{x^{2}+y^{4}}\right| \leq \lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{\left|x^{3}\right| \cdot|\sin y|}{x^{2}+0} \\
& \leq \lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{\left|x^{3}\right| \cdot 1}{x^{2}}=\lim _{\substack{x \rightarrow 0 \\
y \rightarrow 0}}|x|=0
\end{aligned}
$$

So $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{3} \sin (y)}{x^{2}+y^{4}}=0$.
b) First let $y=x$. Then

$$
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{3}+x y+y^{3}}{x^{3}-x y+y^{3}}=\lim _{x \rightarrow 0} \frac{x^{3}+x^{2}+x^{3}}{x^{3}-x^{2}+x^{3}}=-1
$$

Secondly, let $y=x^{2}$. Then

$$
\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{3}+x y+y^{3}}{x^{3}-x y+y^{3}}=\lim _{x \rightarrow 0} \frac{x^{3}+x^{4}+x^{6}}{x^{3}-x^{4}+x^{6}}=1
$$

So the limit does not exist.

