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1 Vectors and the geometry of space

To compute the distance between two points, one can use the Distance formula in three dimensions,
where P1 = (x1, y1, z1) and P2 = (x2, y2, z2).

|P1P2| =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 Distance formula in three dimensions

1.1 Vectors

A vector is denoted by ~a = (a1, a2, ..., an), where (a1, a2, ..., an) are the components of ~a and n
is the number of dimensions.

|~a| =
√
a21 + a22 Length of a vector

The standard basis vector has length 1, and point in positive direction on all axes.

~u =
1

|~a|
~a =

~a

|~a|
Unit vector

1.2 The Dot Product

Take ~a = (a1, a2, a3) and ~b = (b1, b2, b3), then the dot product is determined by the Dot
product equation.

~a ·~b = a1b1 + a2b2 + a3b3 Dot product

• If θ is the angle between two vectors and , then: ~a ·~b = |~a||~b| cos θ

• Two vectors and are orthogonal if and only if ~a ·~b = 0

• The direction angles of a vector can be determined by using the Direction angles equa-
tion. Where α represents the angle to the x-axis, β represents the angle to the y-axis, and
γ represents the angle to the z-axis

1

|~a|
~a = (cosα, cosβ, cos γ) Direction angles

1.3 The cross product

The cross product, or vector product is specific to R and is defined as

~a×~b = det

 i j k
a1 a2 a3
b1 b2 b3


~a×~b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) Cross product

• ~a×~b is orthogonal to both ~a and ~b

• if θ is the angle between ~a and ~b, then |~a×~b| = |~a||~b| sin θ.
In other words, the length of ~a×~b is the area of the parallelogram defined by ~a and ~b

• Two nonzero vectors ~a and ~b are parallel if and only if ~a×~b = 0
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1.3.1 Properties of the cross product

• ~a×~b = −~b× ~a

• c ~a×~b = c(~a×~b)

• ~a× (~b+ ~c) = ~a×~b+ ~a× ~c

• (~a+~b)× ~c) = ~a× ~c+~b× ~c

• ~a · (~b× ~c) = ~a×~b · ~c

• ~a× (~b× ~c) = (~a · ~c)~b− (~a ·~b)~c

1.3.2 Triple products

The triple product describes the volume of a parallelepiped. determined by the vectors ~a, ~b
and ~c

~a · (~b× ~c) =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
V = |~a · (~b× ~c)|

Figure 1: Visualization of a paralellepiped depending on the vectors ~a, ~b and ~c

1.4 Equations of lines and planes

To desribe a line in R3 one can use the Vector equation, where r0 describes a fixed point, and
~v is multiplied with any real scalar.

r = r0 + α~v Vector equation

1.5 Cylinders and Quadric Surfaces

We distinguish six kinds of quadric surfaces as defined in figure 3

4
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Figure 2: Visualization of vector equation in R3

Figure 3: Graphs of quadric surfaces

2 Vector Functions

A vector-valued function is simply a function whose domain is a set of real numbers and
whose range is a set of vectors. f(t), g(t), and h(t) are called the component functions of
the vector function r(t).

r(t) = (f(t), g(t), h(t)) (1)

2.1 Limits and continuity

The limit of a vector function is defined by taking the limit of its component functions.

lim
t→a

r(t) =
(

lim
t→a

f(t), lim
t→a

g(t), lim
t→a

h(t)
)

(2)
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2.2 Derivatives

The derivative of a vector function is similar to the normal definition of a derivative.

dr

dt
= r′(t) = lim

h→0

r(t+ h)− r(t)

h
(3)

Conveniently, this means that the derivative of a vector function is obtained by differentiating
each component.

dr

dt
= r′(t) =

(
f ′(t), g′(t), h′(t)

)
(4)

The vector r′(t) is called the tangent vector to the vector function. The unit tangent vector
is determined as follows:

T(t) =
r′(t)

|r′(t)|
(5)

2.2.1 Differentiation rules

The following theorem shows that the differentiation rules for real-valued functions have their
counterparts for vector functions.

Figure 4: Differentiation rules for vector functions

2.2.2 Integrals

The definite integral of a continues vector function can be defined in almost the same way as
for real-valued functions, except that the integral is a vector.∫ b

a
r(t) dt =

(∫ b

a
f(t) dt,

∫ b

a
g(t) dt,

∫ b

a
h(t) dt

)
(6)

2.3 Arc length and Curvature

The length of a space curve is defined in equation 7

L =

∫ b

a
|r′(t)| dt (7)
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A curve where a certain segment of a vector equation is only traversed once can be expressed
by the arc length function defined in equation 8

s(t) =

∫ t

a
|r′(u)| dt (8)

Equation 8 can be useful to parametrize a curve with respect to the arc length. If we
want to reparametrize a vector equation from a specific point u we find s(t) using equation 8
and then insert s(t) into the original vector equation. (See example 2 in the book, page 863)

2.3.1 Curvature

The curvature of a vector equation at a given point is the measure of how quickly the curve
changes direction at that point. The curvature can be computed through either equation 9, or
equation 10.

κ(t) =
|T′(t)|
|r′(t)|

(9)

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

(10)

2.3.2 The normal and binormal vectors

The unit normal vector describes at which direction the curve is headed at each point, and
can be computed as defined in equation 11. The unit normal vector at t is used to describe a
normal plane at t.

N(t) =
T′(t)

|T′(t)|
(11)

The binormal vector is a vector orthogonal to both T and N. And can be computed with
equation 12. The binomal vector at t is used to describe an oscillating plane at t.

B(t) = T(t)×N(t) (12)

2.4 Motion in Space: Velocity and Acceleration

Vector v gives the average velocity over a time interval of length h and it’s limit is the velocity
vector at time t

v = lim
h→0

r(t+ h)− r(t)

h
= r′(t) (13)

The speed at time t is defined by the magnitude of the velocity vector.

ds

dt
= |v(t)| = |r′(t)| (14)

The accelatrion of a particle is defined as the derivative of the velocity.

a(t) = v′(t) = r′′(t) (15)
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2.4.1 Tangential and Normal Components of Acceleration

It is useful to resolve the acceleration in two components, one in the direction of the tangent
vector, and one in direction of the normal vector, as described in equation

a = υ′T + κυ2N (16)

The tangential and normal components can be easily calculated with the following two formula’s:

aT =
r′(t) · r′′(t)
|r′(t)|

(17)

aN =
|r′(t)× r′′(t)|
|r′(t)|

(18)

2.4.2 Useful formulas

F(t) = ma(t) (19)

Where, F represents force, m represents mass, a represents acceleration.

v(t) =

∫ t

t0

a(u)du+ v(t0) (20)

Where v represents the velocity at a time t, u represents the initial point in space, a represents
acceleration. v(t0) represents the initial velocity.

d =
v0

2 sin(2θ)

g
(21)

The horizontal distance traveled is determined by the product of the horizontal speed and the
duration of travel.
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3 Partial Derivatives

3.1 Functions of several variables

A function f of two variables is a rule that assigns to each ordered pair of real numbers
(x, y) in a set D a unique real number denoted by f(x, y). The set D is the domain of f and
it’s range is the set of values that f takes on, that is, {f(x, y)|(x, y) ∈ D}

3.1.1 Graphs

If f is a function of two variables with domain D, then the graph of f is the set of all points
(x, y, z) ∈3 such that z = f(x, y), and (x, y) ∈ D

3.2 Limits and Continuity

Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b)
Then we say that the limit of f(x, y) as (x, y) approaches (a, b) = L and we write:

lim
(x,y)→(a,b)

f(x, y) = L (22)

if for every number ε > 0 there is a corresponding number δ > 0 such that, if (x, y) ∈ D and
0 <

√
(x− a)2 + (y − b)2 < δ then |f(x, y)− L| < ε.

Notice that |f(x, y)−L| is the distance between the numbers f(x, y) and L, and
√

(x− a)2 + (y − b)2
is the distance between the point (x, y) and the point (a, b). Thus the distance between f(x, y)
and L can be made arbitrarily small by making the distance from (x, y) to (a, b) sufficiently
small (but not 0).

If lim(x,y)→(a,b) f(x, y) approaches L1 along a certain path, and lim(x,y)→(a,b) f(x, y) approaches
L2 along a different path, where L1 6= L2, the limit lim(x,y)→(a,b) f(x, y) does not exist.

A number of ways of approaching whether the limits exists or not are:

• Approaching along the x- and y-axis

• Approaching along the line y = x

• Approaching along the line y = ax

• (Polar) Substitution

3.2.1 Continuity

A function f(x, y) is continues at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b)

3.2.2 Functions of three or more variables

If f is defined on a subset D ∈n, then limx→a f(x) = L means that for every number ε > 0 there
is a corresponding number δ > 0 such that: if x ∈ D, and, 0 < |a− x| < δ, then |f(x)− L| < ε

9
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3.3 Partial Derivatives

In general, if f is a function of two variables x and y, suppose we let only x vary while keeping
y fixed, say y = b, where b is a constant. Then we are really considering a function of a single
variable x, namely, g(x) = f(x, b). If g has a derivative at a, then we call it the partial derivative
of f with respect to x at (a, b) and denote it by fx(a, b).

fx(a, b) = g′(a) where g(x) = f(x, b) (23)

Since by definition g′(a) = limh→0
f(a+h,b)−f(a,b)

h we get

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
(24)

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
(25)

The partial derivatives fx(x, y) and fy(x, y) can be interpreted geometrically as the slopes of
the tangent lines at P (a, b, c) to the traces C1 and C2 of S in the planes y = a and x = b.

3.3.1 Notation for partial derivatives

If z = f(x, y), we write:

fx(x, y) = fx =
∂f

∂x

3.3.2 Rule for finding partial derivative of z = f(x, y)

1. To find fx, regard y as a constant and differentiate f(x, y) with respect to x

2. To find fy, regard x as a constant and differentiate f(x, y) with respect to y

3.3.3 Function of more than two variables

fx(x, y, z) = limh→ 0
f(x+ h, y, z)− f(x, y, z)

h
(26)

10
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3.3.4 Higher derivatives

Higher derivatives can be taken with respect to any variable and are denoted as follows:

fxx =
∂

∂x

(
∂

∂x

)
=
∂2f

∂x2

fxy =
∂

∂y

(
∂

∂x

)
=

∂2f

∂x∂y

3.3.5 Clairaut’s Theorem

If fxy(a, b) and fyx(a, b) are both defined and f(a, b) is continues, equation 27 holds.

fxy(a, b) = fyx(a, b) (27)

3.3.6 Laplace’s equation

A function f(a, b) is harmonic if equation 28 holds.

∂2

∂x2
+

∂2

∂y2
= 0 (28)

3.4 Tangent Planes and Linear Approximations

Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface
z = f(x, y) at the point P = (x0, y0, z0 is

z − z0 = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) (29)

3.4.1 Linear Approximations

The linear equation that follows from equation 29 is called the linearization of the tangent
plane to the graph of a function f of two variables at the point (a,b,f(a,b)) is

L(x, y) = fx(a, b) + fx(a, b)(x− a) + fy(a, b)(y − b)

The Linear Approximation is defined as follows:

f(x, y) ≈ fx(a, b)(x− a) + fy(a, b)(y − b)

3.4.2 Differentials

For a differentiable function of two variables, z(x, y), we define the differentials dx and dy to
be independent variables; that is, they can be given any values. Then the differential dz, also
called the total differential, is defined in equation 30

dz = fx(x, y)dx+ fy(x, y) =
∂z

∂x
dx+

∂z

∂y
dy (30)

11
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3.5 The chain rule

Suppose that z = f(x, y), is a differentiable function of x and y, where x = g(t) and y = h(t)
are both differentiable functions of t. Then z is a differentiable function of t

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
(31)

The derivative dz
dt can be interperated as the rate of change of z with respect to t.

We now consider the situation where z = f(x, y) but x and y are both a function of two
variables x = g(t, s) and y = h(t, s). Then z is indirectly a function of s and t and we wish to
find ∂z

∂t and ∂z
∂s . In computing ∂z

∂t we hold s fixed and compute the ordinary derivative of z with
respect to t. Therefore we can apply equation 31 to obtain:

∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

Figure 5: Overview of different partials when z = f(x, y) where x = g(s, t) and y = h(s, t)

In this situation, s and t are independent variables, x and y are called intermediate variables,
and z is the dependent variable.

3.5.1 Implicit differentiation

The chain rule can simplify implicit differentiation as learned in calculus 1. For a function that
is defined implicitly it follows that:

dy

dx
= −Fx

Fy
(32)

A function of 3 variables that is defined implicitly can also be differentiated as follows

∂z

∂x
= −Fx

Fz

and
∂z

∂y
= −Fy

Fz

12
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3.6 Directional Derivatives and the gradient vector

If f is a differentiable function of x and y, then f has a directional derivative in the direction of
any unit vector u = (a, b) and:

Duf(x, y) = fx(x, y)a+ fy(x, y)b (33)

3.6.1 The Gradient Vector

If f is a function of two variables x and y, then the gradient of f is the vector function ∇f
defined as:

∇f(x, y) =
∂f

∂x
i +

∂f

∂y
j (34)

Moreover, the rate of change can be defined as:

Duf(x, y) = ∇f(x, y) · u (35)

Similairly, for a function of more than 2 variables:

∇f(x, y, z) =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k (36)

Duf(x, y, z) = ∇f(x, y, z) · u (37)

3.6.2 Maximizing the directional derivative

The maximum value of the directional derivative Duf(x) is |∇f(x)|, which occurs when u has
the same direction as the gradient vector.

3.6.3 Tangent planes to level surfaces

If F is a surface of a function of three variables F (x, y, z) = k, P is a point on this surface
P (x0, y0, z0) corresponding to parameter value t0, C is any vector function r′(t) = (x(t), y(t), z(t)),
the equation of the tangent plane at point P is defined as:

∇F (x0, y0, z0) · r′(t0) = 0

Figure 6: Tangent plane to a function of three variables

Using the standard equation of the tangent plane as in equation 29 we get:

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0

The normal line to S at P can be described is defined as:
x− x0

Fx(x0, y0, z0)
+

y − y0
Fy(x0, y0, z0)

+
z − z0

Fz(x0, y0, z0)
= 0 (38)

13
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3.7 Maximum and Minimum values

To determine the local minimum and maximum of a function of two or more variables we first
have to determine the critical point.

• The critical point exist at (a, b) when fx(a, b) = 0 and fy(a, b) = 0.

Subsequently, to determine whether the critical point is a maximum, minimum, or saddle point
(neither), a second-derivative test is performed. Let:

• Let D = fxx(a, b)fyy(a, b)− [fxy(a, b)]2

1. D > 0 and fxx(a, b) > 0 (a, b) is a local minimum

2. D > 0 and fxx(a, b) < 0 (a, b) is a local maximum

3. D < 0, (a, b) is a saddle point

3.8 Langrange multipliers

Another way to find maximum and minimum values is by Langrange multipliers. Or in other
words, to find the maximum and minimum values of f(x, y, z) constrainted by some g(x, y, z) = k
(assuming that these extreme values exist and ∇g 6= 0 on the surface g(x, y, z) = k.

1. Find all values of x, y, z and λ such that

∇f(x, y, z) = λ∇g(x, y, z)

and
g(x, y, z) = k

2. Evaluate f at all points (x, y, z) that result from step a. Largest values are maximum and
smallest are minimum.

14
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4 Vector Calculus

4.1 Vector Fields

Let D be a set in Rn. A vector field on Rn is a function F that assigns each point (x, y, ..., n)
a n-dimensional vector F(x, y, ..., n)

Figure 7: Example of a vector field

4.1.1 Gradient Fields

From equation 34 we know that ∇f(x, y) = ∂f
∂x i + ∂f

∂y j which is really a vector field on R2. In a
gradient vector field, the vectors are perpendicular to the level curves.

4.2 Line integrals

In a line integral, instead of over an interval [a, b] we integrate over a curve C.

∫
C
f(x, y)ds =

∫ b

a
f(x(t), y(t))

√(
dx

dt

)2(dy
dt

)2

dt (39)

Where x(t) and y(t) are parametrizations with respect to some t and ds is the length of curve
C.

Sometimes it can be hard to find a parametrization for the curve. In this case we can also
use vector representation.

r(t) = (1− t)r0 + tr1, 0 6 t 6 1

However, instead of integrating over some interval [a, b] we integrate with respect to t and thus,
from 0 to 1.
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4.2.1 Line integrals in space

Line integrals in space are similar to equation 39, just with three variables. They can also be
denoted in vector notation: ∫ b

a
f(r(t))|r′(t)|dt

4.2.2 Line integrals of Vector Fields

We can determine the work W done by a vector field by finding the integral of the dot product
of the force field F and the unit tangent vector T at a given point

W =

∫
C

F(x, y, z) ·T(x, y, z)ds =

∫
C

F ·Tds =

∫ b

a
F(r(t)) · r′(t)dt

4.3 The fundamental theorem for line integrals

Let C be a smooth curve given by the vector function r(t), a 6 t 6 b. Let f be a differentiable
function of two or three variables whose gradient vector ∇f is continuous on C∫

C
∇f · dr = f(r(b))− f(r(a)) (40)

4.3.1 Independence of path

The line integral
∫
C F · dr is independent of path if

∫
C1

F · dr =
∫
C1

F · dr for any two paths

C1 and C2 that have the same initial point and terminal point. It now follows that
∫
C F · dr is

independent of path if and only if
∫
C F · dr = 0 for every closed path C in D.

Suppose F is a vector field on an open connected region D. If
∫
C F · dr is independent of

path in D, then F is a conservative vector field on D. That is, if there exists a function f such
that ∇f = F

Let F = P i + Qj be a vector field on an open simply-connected region D. Suppose P and Q
have continuous first-order partial derivatives. If:

∂P

∂y
=
∂Q

∂x

throughout D, then F is conservative.
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4.4 Curl and Divergence

If F = P i + Qj + Rk is vector field on R3 and the partial derivatives all exist, then the curl of
F is the vector field on R3 defined by

curl F =

(
∂R

∂y
− ∂Q

∂z

)
i +

(
∂P

∂z
− ∂R

∂x

)
j +

(
∂Q

∂x
− ∂P

∂y

)
k

Or
curl F = ∇× F

• If f is a function of three variables with second order partial derivatives, then:
curl(∇f) = 0

• If curlF = 0 then F is conservative.

4.4.1 Divergence

If F = P i+Qj+Rk and the partial derivatives all exist, then the divergence of F is the function
of three variables defined by:

div F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

Or
div F = ∇ · F

If F = P i +Qj +Rk is vector field on R3 and the second-order partial derivatives all exist, then

div curl F = 0
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