Extra practice exam - Fluid Dynamics 2021

This practice exam consists of 4 questions. Questions marked with a [*] can be considered slightly more difficult than regular exam questions.

Question 1

A pressurized water reservoir A, whose free-surface is kept at a pressure $2 \times 10^{5} \mathrm{~Pa}$ above the atmospheric pressure, discharges to another reservoir, B , open to the atmosphere, via a tube C , see drawing below.

The water free-surface level at the second reservoir is below the tube that comes front the pressurized reservoir A. The volume of reservoir B is $1000 \mathrm{~m}^{3}$, exactly sufficient to empty the reservoir A. The cross-section area of reservoir A is $50 \mathrm{~m}^{2}$. The cross-section area of the tube C is $0.1 \mathrm{~m}^{2}$.
Calculate how long it takes to empty the reservoir A.
N.B. the level of water in $A(h)$ is a function of time, i.e., $h=h(t)$.

Assume $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}, \rho_{\text {water }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$

Question 2

A plate $0,3 \mathrm{~m}$ long and $0,1 \mathrm{~m}$ wide, with a thickness of 12 mm is made from stainless steel $(\lambda=16 \mathrm{~W} /(\mathrm{m} \cdot \mathrm{K}))$. The top surface is exposed to an airstream temperature of $20^{\circ} \mathrm{C}$. In an experiment the plate is heated by an electrical heater (also $0,25 \mathrm{~m}$ by 0.1 m) positioned on the underside of the plate and the temperature of the bottom surface is kept by the heater at $100^{\circ} \mathrm{C}$. The heater provides 50 W . The side surfaces are perfectly isolated.

Calculate the convective heat transfer coefficient h.

Question 3*

A PhD student of the department of organic chemistry recently developed a synthesis route for biodegradable surfactants on the basis of sugars. They asked a student in chemical engineering to estimate what the possibilities are for a (semi-) industrial process in a stirred tank reactor of $1.25 \mathrm{~m}^{3}$. The student determined the rotational speed and the dissipated power of the stirrer at optimal production circumstances in a geometrical similar (= equally shaped) tank reactor of 10 liters. The motor power Po (W) is a function of the rotational speed of the stirrer $\mathrm{N}\left(\mathrm{s}^{-1}\right)$, the density of the medium ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, the viscosity of the medium η (Pa s) and the diameter of the reactor $\mathrm{D}(\mathrm{m})$.The experiments show that optimal conditions can be reached in the 10 liter reactor at a stirrer speed of 150 RPM and at a motor power of 70 Watt.
a. How many dimensionless numbers do you expect you need to describe the power of the stirrer and why?
b. Give a dimensionless expression for Po.
c. What do you recommend for the stirrer speed in the production reactor?
d. What motor power is needed in the production reactor?

Question 4*

Two litres of water ($\rho=1 \mathrm{Kg} \cdot \mathrm{L}^{-1}$) per second flow through a horizontal pipe with a constant diameter $D=5 \mathrm{~cm}$. There is an obstacle in the pipe which forms an (extra) element of resistance to the flow; conversely, the flow exercises a force F on the obstacle. With the help of a U-form pressure sensor, similar to the ones used by the Venturi tubes, the pressure difference between two points (1 and 2) before and after the obstacle can be measured. Mercury ($\rho_{H g}=13,5 \mathrm{Kg} \cdot \mathrm{L}^{-1}$) is used in the U-form pressure sensor. The mercury level difference in the two sides of the pressure sensor is 8 mm .

Calculate the force F that the flowing water is exercising on the obstacle. Assume $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

Hint: write a momentum balance between points 1 and 2.

Flow direction

