
University of Groningen

Dynamics of Engineering Systems: Course
Reader

Thom Badings, Calvin Rekveld, Chris de Bruijn, Pablo Druetta, Tim Kousemaker &
Antonis I. Vakis

June 9, 2021



Contents

1 Introduction 4

2 Modeling and Analysis of Structural Systems 5
2.1 Single harmonic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Simple mass-spring-damper systems . . . . . . . . . . . . . . . . . . . 5
2.1.2 Damped harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Driven, damped harmonic oscillator . . . . . . . . . . . . . . . . . . . 6
2.1.4 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.5 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Pendulum systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Simple pendulum systems . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Driven pendulum with damping . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Double (articulated) pendulum . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Dynamical contact for a bouncing ball . . . . . . . . . . . . . . . . . . 12
2.3.2 Bouncing pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Multi degree of freedom (M-DOF) systems . . . . . . . . . . . . . . . . . . . . 15
2.5 Electromechanical systems (DC motor) . . . . . . . . . . . . . . . . . . . . . . 17
2.6 The eigenvalue problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6.1 Physical meaning of the eigenvalue problem . . . . . . . . . . . . . . . 20
2.6.2 Simplified 4-story building example (4-DOF) . . . . . . . . . . . . . . 20

3 Kuramoto Oscillators 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Mechanical Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Electrical Power Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Networks with Synchronous Generators . . . . . . . . . . . . . . . . . 24

4 Systems and Control Volumes 27

5 Linear Viscoelasticity 37

6 Fluid Dynamics 46

7 Heat Transfer and Reaction Kinetics 53
7.1 Boundary and Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Heat Diffusion Equation - Solutions . . . . . . . . . . . . . . . . . . . . . . . 61

7.2.1 Transient Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

1



7.2.2 Solving the Heat Equation for a Rod . . . . . . . . . . . . . . . . . . . 63
7.2.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Bibliography 74

Appendices 75

A Discretization 76
A.1 Why discretization? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.2 Generating the mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.3 First order forward difference . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.4 First order backward difference . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.5 First order central difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.6 Second order central difference . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2



Analogy of equivalent systems

Translational mechanical mẍ+ cẋ+ kx = F

Rotational mechanical Iθ̈ + T θ̇ + µθ = Y

Series RLC circuits Lq̈ +Rq̇ +
q

c
= e

Parallel RLC circuits Cg̈ +Gġ +
g

L
= ż
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1 Introduction

In front of you is the reader for the course Dynamics of Engineering Systems. The main aim
of this course is to integrate the knowledge gained from preceding courses on mathematics,
modelings and programming. In particular, this reader serves as reference work, next to the
lectures and practicals.

The current version of the reader covers four main domains of dynamical systems treated in
the course:

• Structural dynamics, such as harmonic oscillators, pendulum systems and electrome-
chanical circuits;

• Fluid dynamics, such as hydraulics, ideal and real gas flows;

• Heat transfer and reaction kinetics, such as diffusion, viscoelasticity, and chemical re-
actions;

• Network dynamics, such as those relating to power networks or logistics systems.

In general, each chapter or main section of the reader first covers the theoretical background
of the corresponding domain. Second, a step-by-step derivation of the appropriate mathe-
matical model is provided. For most problems, the discretized numerical implementation in
MATLAB is given in terms of pseudocode; a general description of the code, in simplified
programming language. Note that a general introduction to discretization is provided in
Appendix Appendix A.

Note that this course serves as the finalization of the mathematics learning path in the first
year of the IEM bachelor programme and, as such, follows the two courses on Calculus for
IEM (I and II) and Linear Algebra, while the course content thematically complements that
of the courses on Programming, Modeling and Simulation and System Dynamics. Students
are assumed to have prior knowledge from these preceding courses, especially on ordinary and
partial differential equations, linear algebra and basic modeling and programming skills.
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2 Modeling and Analysis of Structural Systems

The first main chapter of this reader is on the modeling and analysis of structural systems.
In this chapter, you will learn how to derive mathematical models for common types of
structural systems, and how to obtain the solution to the corresponding equations using
numerical methods.

2.1 Single harmonic oscillators
In this chapter, we focus on the class of systems called harmonic oscillators. First, we will focus
on a simple mass-spring system, which is then extended to the general mass-spring-damper.
We show how to rewrite the corresponding 2nd order equations of motion into 1st order
equations, which can be solved using conventional solver functions. We then demonstrate
how the derived model can be extended to mass-spring-damper systems with multiple masses.
Finally, we also touch briefly upon electromechanical systems and their similarity to other
harmonic oscillators.

2.1.1 Simple mass-spring-damper systems
A general mass-spring-damper system is visualized as in Figure 2.1. For simplicity, any friction
or gravitational force is often (and also in this chapter) neglected. We start the derivation
of the mathematical model by neglecting the damper, and only considering the mass-spring
system, which is not driven by any external force.

Starting from Newton’s 2nd law of motion, we have

F = ma, (2.1)

With F the force exerted in N, m the mass of the object in kg, and a the acceleration in m/s2.
Given a simple harmonic oscillator with 1-dimensional position z, this yields the following
expression:

F = ma = m
d2z

dt2
= mz̈. (2.2)

Figure 2.1: Mass-spring-damper system

5



On the other hand, the force exerted is exclusively described by the spring dynamics:

F = −kz, (2.3)

where k is the spring coefficient in N m−1. Combining Equation 2.2 and 2.3 yields:

mz̈ + kz = 0. (2.4)

The equality in Equation 2.4 is regarded as the equations of motion of the simply harmonic
oscillator. Its general solution is described by

z(t) = A cos(ωt+ φ),

ω =

√
k

m
,

(2.5)

which oscillates with period T = 2π
ω .

2.1.2 Damped harmonic oscillator
We now extend the model of the simple harmonic oscillator, by introducing a damper, which
damps the oscillation over time. Because both the spring and the damper exert a force on
the mass, we have to include both in the expression for the force:

F = Fspring + Fdamper = −kz − cdz
dt
, (2.6)

where c is the damping coefficient in N s m−1. Combining Equation 2.6 and 2.2 gives us the
equations of motion for the damped harmonic oscillator:

mz̈ + cż + kz = z̈ + Jż + ω2
0z = 0, (2.7)

where J = c
2
√
mk

and ω0 =
√

k
m . If the damping factor J = 1, the system is called critically

damped, resulting in the quickest approach to zero (position and speed), without any over-
shoot. The system is overdamped if J > 1, resulting in a slower approach to zero, and the
system is underdamped if J < 1, resulting in a oscillation which is slowly damped over time,
but will initially always overshoot the equilibrium.

2.1.3 Driven, damped harmonic oscillator
A damped harmonic oscillator with damping coefficient c > 0 will always approach its equi-
librium state over time, which is z = 0, ż = 0. However, if we add an external force, Fext, the
situation changes. The general equations of motion for a driven, damped harmonic oscillator
are described by

mz̈ + cż + kz = Fext(t). (2.8)
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The general solution of the system for an external force Fext(t) = mω2
0 for t ≥ 0 is

z(t) = 1− exp
{
− Jω0t

[sin(
√

1− J2ω0t+ φ)

sinφ

]}
, where

φ = cos−1 J

(2.9)

As a second example, consider the sinusoidal external force Fext(t) = F0 sin(ωt). Then, the
steady-state solution is given by

z(t) =
F0

mzmω
sin(ωt+ φ), where

zm =

√
(2ω0J)2 +

1

ω2
(ω2

0 − ω2)2, and

φ = tan−1
( 2ωω0J

ω2 − ω2
0

)
+ nπ

(2.10)

Although the general solution to the system with sinusoidal external force consists of another
term, called the transient solution, this term dies out fast enough to be ignored, leaving only
the steady-state solution.

2.1.4 Numerical solution
In order to solve the equations of motion of the harmonic oscillator with a numerical solver,
we need to rewrite the 2nd order ODE Equation 2.8 into a system of 1st order ODE’s. To
this end, we define the following two state variables:

z1 = z(t),

z2 = ż1 = ż(t).
(2.11)

Note that this gives ż2 = z̈(t). Rewriting the 2nd order ODE using the new state variables
yields the following system of two 1st order ODE’s:

[
ż1

ż2

]
=

[
0 1

− k
m − c

m

] [
z1

z2

]
+

[
0

Fext(t)
m

]
. (2.12)

2.1.5 Pseudocode
The pseudocode for solving the standard mass-spring-damper system is provided in Pseu-
docode 1. First, the workspace is cleared in step 1, and constants are defined in step 2. Then,
the function handle is defined in step 3 (note that this is in fact Equation 2.12 in vector form),
which is used as input for the solver in step 4. Although this specific example utilizes the
built-in ode45 solver, other ODE solvers can generally be used as well. Finally, the solution
is plotted against time in step 5.
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Pseudocode 1: Mass-spring-damper implementation

1: Clear all; clc;
2: Define constants: m, k, c, and Fext
3: f = @(t, z)

[
z(2); −k/m ∗ z(1)− c/m ∗ z(2) + Fext/m

]
;

4: [t, s] = ode45(f , [tstart, tend], [z1(0), z2(0)]);
5: plot(t,z);

2.2 Pendulum systems
2.2.1 Simple pendulum systems
In this chapter, we derive the equations of motion for the pendulum (Figure 2.2, and show
how the equations can be solved using a numerical solver.

Starting from Newton’s 2nd law for rotation, we have

τ = Iα, (2.13)

where τ is the torque in N m, I the moment of inertia kg m m and α the angular acceleration in
rad/s2. From Figure 2.2, we observe that the gravitational force exerted on the mass is char-
acterized by Fg = mg, with g = 9.81 m/s2 the gravitational force. The vertical gravitational
force is translated to the portion perpendicular to the pendulum rotation by

F = Fg sin θ. (2.14)

Figure 2.2: Simple pendulum
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Rotational torque is defined as the force times the radius, yielding τ = −mgL sin θ. Fur-
thermore, the inertia of the mass is given by I = mL2, and the angular acceleration α = θ̈,
yielding the following equation of motion:

θ̈ +
g

L
sin θ = 0. (2.15)

Although Equation 2.35 is similar to Equation 2.4, it contains a nonlinear sinusoidal term.
To linearize this term, we make use of the so-called small angle approximation, which states
that for angle θ small enough, we can estimate the sinusoidal term by

sin θ ≈ θ. (2.16)

Using this approximation gives the linearized equation of motion:

θ̈ +
g

L
θ = 0. (2.17)

The general solution to Equation 2.17 is given by

θ(t) = A cos(ωt+ φ), where

ω =

√
g

L
,

(2.18)

where ω is the natural frequency of the system (note again the equivalence between the
pendulum and mass-spring-damper system).

2.2.2 Driven pendulum with damping
We extend upon the simple pendulum by adding a driving force and a damping term. To
this end, we do not apply the small angle approximation, thus leaving us with the nonlin-
ear equation of motion for the pendulum. Similar to the mass-spring-damper systems, the
damping force is proportional to the angular velocity, θ̇, and the driving force is embedded
as follows:

θ̈ + αθ̇ +
g

L
sin θ =

Mext

mL2
, (2.19)

where α is the damping coefficient in N rad s−1. Note that the forcing term is different then
for harmonic oscillators, because we now consider angular force.

Dimensional analysis
In order to gain understanding of the equation of motion, we take a step back, and perform a
dimensional (unit) analysis to determine in what some of the analysis are written. We start
by determining the unit of the forcing term::
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[
Mext

mL2

]
=
��N��m

��kg��m2
· �
�kg�m
�s2

��N
=

1

s2 =
rad

s2 , (2.20)

which reveals that the forcing term is in radian per second squared! Next, we do the same
for the units of the damping term, α:

[αθ̇] = [θ̈] = [g/L][sin θ] =

[
Mext

mL2

]
=

radian

s2 . (2.21)

As we know that [θ̇] = rad
s we conclude that the unit of the damping term is [α] = 1

s .

Next, what are the units of the T? We know that [T θ̇] = [Mext] = N ·m, so that implies that

[T ] =
N m

θ̇
=

N m

rad s−1 =
N m s

rad
= N m s. (2.22)

But, as we know that N = kg m
s2

, this means the units are further simplified to [T ] = kgm2

second

Finally, we put all units together, and check if the complete equation is consistent:

α =
T

mL2
⇒ [T ]

[m][L2]

⇒ 1

s
= �
�kg�
�m2

s

��kg��m2
=

1

s
,

(2.23)

which is obviously correct!

2.2.3 Numerical solution
In order to solve the equations of motion for the pendulum numerically, we rewrite the 2nd
order ODE as a system of 1st order ODEs. To this end, define

x1 = θ(t),

x2 = ẋ1 = θ̇(t).
(2.24)

Note that this gives ẋ2 = θ̈(t). Rewriting the 2nd order ODE using the new state variables
yields the following system of two 1st order ODE’s:

[
ẋ1

ẋ2

]
=

[
0 1
− g
L −α

] [
x1

x2

]
+

[
0

Fext(t)

]
. (2.25)
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2.2.4 Pseudocode
The system of first order differential equations can be solved in MATLAB by applying a
suitable ODE solver, such as the ODE45 function. The pseudocode for solving the (driven)
pendulum is provided in Pseudocode 2. First, the workspace is cleared in step 1, and constants
are defined in step 2. Then, the function handle is defined in step 3 (note that this is in fact
Equation 2.36 in vector form), which is used as input for the solver in step 4. Although this
specific example utilizes the built-in ode45 solver, other ODE solvers can generally be used
as well. Finally, the solution is plotted against time in step 5. If desired, animation of the
solution can be included as well.

2.2.5 Double (articulated) pendulum
The double (or articulated) pendulum is an extension of the simple pendulum discussed in
the previous sections, and is shown in Figure 2.3. Although derivation of the equations of
motion for the double pendulum is similar as for the simple pendulum, its behavior can be
very different. The motion of the double pendulum is categorized as chaotic, as its trajectory
depends extremely closely to its precise initial conditions.

Exact derivation of the equations of motion for the double pendulum is nicely done on the fol-
lowing Wolfram webpage: http://scienceworld.wolfram.com/physics/DoublePendulum.
html (Weisstein, 2007). The resulting equation of motions are given by:

Pseudocode 2: Simple (driven) pendulum implementation

1: Clear all; clc;
2: Define constants: g, L, α, Fext and tend

3: f = @(t, th)
[
th(2); (−g/L) ∗ th(1)− α ∗ th(2) + Fext

]
4: [t, s] = ode45(f , [tstart, tend], [t(0), th(0)]);
5: plot(t,z);

Figure 2.3: Double pendulum
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(m1 +m2)l1θ̈1 +m2l2θ̈2 cos(θ1 − θ2) +m2l2θ̇
2
2 sin(θ1 − θ2) + g(m1 +m2) sin θ1 = 0

m2l2θ̈2 +m2l1θ̈1 cos(θ1 − θ2)−m2l1θ̇
2
1 sin(θ1 − θ2) +m2g sin θ2 = 0

(2.26)

If you look carefully into the derivation of Equation 2.26, you’ll notice that the derivation is
very similar compared to the simple pendulum. However, it also shows that the complexity
of the system increases exponentially by doubling the amount of elements.

The exact derivation of the corresponding state-space system is nicely described in fol-
lowing reference: https://ir.canterbury.ac.nz/bitstream/handle/10092/12659/chen_

2008_report.pdf (Chen, 2008).

Due to its chaotic behavior, solving the motion of the double pendulum can require a more
sophisticated algorithm, or at least a smaller time-step, than for solving the simple pendu-
lum. As any small integration or numerical error of the solver results in significantly larger
deviations in output (the butterfly effect), solving the dynamics for the double pendulum is
prone to errors. This is nicely visualized in the following YouTube movie by Think Twice:
https://www.youtube.com/watch?v=d0Z8wLLPNE0 (Think Twice, 2017)

2.3 Hybrid systems
In this section, we will focus on the class of switching systems. We do this by introducing two
examples. First, the model for dynamical contact of a bouncing ball is derived. This system
can be in two states: the ball is either falling, or it is in contact with the ground. In this
chapter, we will show how to deal with this switching between two states. Second, we will
derive a similar model for a pendulum which is bouncing against a wall.

2.3.1 Dynamical contact for a bouncing ball
Consider the system of a bouncing ball, which is subject to the gravitational force, g. The
ball is either falling, or it is in contact with the ground (i.e. the event of ’bouncing’). In order
to capture such dynamics of the bouncing ball, we need to introduce a so-called switching
system. Based on an IF-statement, we can determine if it is appropriate to activate the system
in falling state, or to activate the system in contact with the ground.

In this section, we focus on the contact of the ball with the ground. In fact, the dynamical
contact of the ball with the ground can be modeled similar to the mass-spring-damper in
Equation 2.7. However in this case, the spring and damping coefficients are not constant.
Instead, they are a function of the deformation of the ball, w.

The force applied to the ball is related to the deformation w between the ball and the ground,
and is defined by the Hertzian contact force, which is calculated as

P (w) =
4

3
E∗R0.5w1.5, (2.27)

where P (w) is the force in N as a function of the deformation (w), E∗ is the reduced elastic
modulus in Pa (which is determined by the materials of the ball and ground), R the radius
of the ball in m, and w the deformation of the ball.
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The deformation of the ball should be calculated such that it only has a value in the case
of contact, and is zero otherwise. This can be achieved by taking the difference between the
radius R and vertical position z, constrained by zero (as negative deformation does not make
sense):

w = max(0, R− z). (2.28)

The calculated contact force is then substituted in the equations of motion, similar as for the
mass-spring-damper systems, implying that the acceleration of the ball (z̈) is related to the
force via the following expression:

z̈ =
P (w)

m
. (2.29)

As the value of P is a function of the deformation w, which changes over time, the corre-
sponding system is called a time-variant system.

2.3.2 Bouncing pendulum
We can now extend the model of the simple pendulum, and combine it with that of the bounc-
ing ball, to derive a mathematical model for the bouncing pendulum. As for the bouncing
ball, this requires the implementation of a switching system, which allows to make the system
matrix time-variant.

Contact of the bouncing pendulum with the wall, occurs when the x-position is smaller than
the radius R of the ball, i.e. x < R. Assuming the wall to be rigid, this geometric violation
results in deformation of the ball. As the model for the simple pendulum was written in terms
of angular coordinates, we first translate this in x (horizontal) and z (vertical) coordinates:

x = L sin θ, z = L(1− cos theta). (2.30)

Hence, contact is made if x = L ∈ θ < R, and the resulting deformation of the ball is
characterized by d = |L sin θ −R|.

Similar to the bouncing ball, we follow Hertzian mechanics theory to model the contact force:

P (w) =
4

3
E∗R0.5w1.5, (2.31)

with R the radius of the ball, w the deformation of the ball, and E∗ the reduced elastic
modulus, defined as

E∗ =
(1− v2

1

E1
+

1− v2
2

E2

)−1
, (2.32)

where v1 and v2 are the Poission’s ratios associated with the bodies, and E1 and E2 the elastic
moduli.
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If the contact would take place between two spheres, we also need to take the effective radius
into account:

R∗ =
( 1

R1
+

1

R2

)−1
, (2.33)

where R1 and R2 are the radii of the two bodies. In this case, we consider sphere-on-flat
contact, which means that we have R1 = R and R2 = ∞, resulting in the effective radius
being the same as the actual radius of the ball. So, the contact force is modelled by the
following switching state:

P =

{
4
3E
∗R0.5w1.5 if L sin θ < R (implying contact),

0 otherwise.
(2.34)

The next step is to combine the equation of motion (EoM) of the pendulum with the contact
dynamics above. In this case, we do not apply the small angle approximation, yielding the
non-linear equation of motion:

θ̈ + αθ̇ +
g

L
sin θ =

Mext

mL2
+

P

mL
, (2.35)

as presented before, but with the contact force, P
mL included as well. As the moment is LP

(and not just P), one L in the denominator drops out for the contact force term. Note that
the force P is determined by the switching state in Equation 2.34.

Reformulating this 2nd order ODE into a system of two 1st order ODEs, and again adopting
the small angle approximation yields:

[
ẋ1

ẋ2

]
=

[
0 1
− g
L −α

] [
x1

x2

]
+

[
0

Fext(t) + P
mL

]
, (2.36)

where we defined state variables x1 = θ and x2 = θ̇.

In non-forced, non-contacting (bouncing) state, Mext = P = 0, and the natural frequency of
scillation is ω0 = 2π

T0
= α =

√
g/L.

If the case with damping, and α2 − 4ω2
0 > 0 ⇒ α > 2ω0, the pendulum is overdamped. If

α = 2ω0, the pendulum is critically damped, and if α < 2ω0, the pendulum is overdamped.

Numerical solution
We consider the classic Runge-Kutta 4th order method (RK4) to derive the numerical solution
for the bouncing pendulum. In general, this method considers initial value problems of the
form

ẏ = f(x, y), y(x0) = y0. (2.37)

As discussed in the Appendix on discretization, taking the Taylor series expansion gives
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y(x+ h) = y(x) + hẏ(x) +
h2

2!
ÿ(x) + · · · , (2.38)

where ẏ = f , ÿ = ḟ , etc. and h is the time step. Euler’s (explicit) method is one of the
simplest methods derived from this Taylor series, and computes

yn+1 = yn + hf(xn, yn). (2.39)

The RK4 method finds its origin with Euler’s method, but uses multiple function evaluations
at each time, according to the following scheme:

yn + 1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4), where (2.40a)

k1 = hf(xn, yn)

k2 = hf(xn + h
2 , yn + k1

2 )

k3 = hf(xn + h
2 , yn + k2

2 )

k4 = hf(xn + k, yn + k3)

(2.40b)

Finally, the bouncing pendulum is implemented in MATLAB using an adaptive time step
scheme. This entails that time step h is not constant, but is varied over time, depending on
the error of the method for that iteration. Generally, the time step will be decreased in cases
near contact, since that state is more prone to errors.

Pseudocode
The pseudocode for the bouncing pendulum implementation is provided below in Pseu-
docode 3. First, simulation (time) variables and the system parameters are defined, resulting
in matrix A (the internal, state-dependent system matrix). The main WHILE-loop iterates
through time, and checks at each time step t is contact with the wall is made. If so, the
contact force is calculated; otherwise, P = 0. Similarly, it is checked if the external force
(which is applied from Text on) is apparent. The system of ODEs is then updated in lines
17-18, and solved using an appropriate method. If the resulting error in the solution exceeds
the limit ε, the step size dt is reduced. At the end of each iteration, the results θ(t) and ω(t)
are stored, and time proceeds according to t = t+ dt. Finally, the results for the angle θ and
angular velocity ω are plotted in time.

2.4 Multi degree of freedom (M-DOF) systems
In this section, we extend the model for harmonic oscillators, by adding multiple masses.
Although derivation of the equations of motion is typically similar to the simple mass-spring-
damper, the connection of different masses influences the respective dynamics.

Consider the system in Figure 2.4, consisting of two masses on wheels, connected via three
springs to each other and two rigid walls. For simplicity, we assume that there is no friction
between the wheels and the ground. The free body diagram (FBD) for cart 1 is shown in
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Figure 2.4: Mass-spring-damper system with two masses

Figure 2.5. Assume the first cart (m1) moves x1 to the right (x1 > 0). This elongates the
first spring (k1) and compresses the second (K2).

The second cart (m2) moves x2, but, depending on the stiffnesses of springs k2 and k3, x2

Pseudocode 3: Bouncing pendulum implementation

1: Set simulation (time) variables
2: Set g, m, R, E∗, L, α, Mext

3: A = [0, 1;−g/L,−α];
4: while t ≤ tend do
5: w = L sin θ −R;
6: if w > 0 then
7: P = 0;
8: else
9: P = 4

3E
∗R0.5w1.5;

10: end if
11: if t > Text && mok= 0 then
12: mok= 0;
13: M = Mext;
14: else
15: M = 0;
16: end if
17: f = [0;M/(mL2) + P/(mL)];
18: Update ODE ẋ = Ax+ f
19: Solve linear system (e.g. RK4, RK5)
20: Calculate error (depending on method)
21: if error > ε then
22: Reduce step size dt;
23: end if
24: θ(t) = q(1);
25: ω(t) = q(2);
26: t = t+ dt;
27: end while
28: plot(t,θ,ω);
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may be positive or negative. If x1 > x2 for x2 > 0, the second spring is compressed; if
x2 < 0, the second spring is compressed even more. Whether the third spring is compressed
or tensioned will then depend on whether x2 > 0 or x2 < 0. Customarily, we assume positive
displacements and let’s also assume x1 > x2. Then, the free body diagram for cart 2 is as
presented in ..

The corresponding equations of motion (EOM) are described as follows:

−k1x1 + k2(x2 − x1)− b1ẋ1 + b2(ẋ2 − ẋ1) = m1ẍ1,

k2(x1 − x2)− k3x2 + b2(ẋ1 − ẋ2)− b3ẋ2 = m2ẍ2,
(2.41)

which, after rearranging yields:

m1ẍ1 + (b1 + b2)ẋ1 − b2ẋ2 + (k1 + k2)x1 − k2x2 = 0,

m2ẍ2 − b2ẋ2 + (b2 + b3)ẋ2 − k2x1 + (k2 + k3)x2 = 0.
(2.42)

In matrix form, the EOM are described by

[
m1 0
0 m2

] [
ẍ1

ẍ2

]
+

[
b1 + b2 −b2
−b2 b2 + b3

] [
ẋ1

ẋ2

]
+

[
k1 + k2 −k2

−k2 k2 + k3

] [
x1

x2

]
=

[
0
0

]
. (2.43)

Note that the EOM for a mass-spring system are identical to those of any linear system, i.e.
[M ]{ẍ}+ [B]{ẋ}+ [K]{x} = 0.

2.5 Electromechanical systems (DC motor)
In this section, we briefly touch upon electromechanical systems, in order to highlight their
resemblance to other harmonic oscillators. We consider the general DC motor electrical
system (armature circuit) as shown in Figure 2.7.

From Kirchhoff’s Voltage law (KVL), we know that

n∑
k=1

Vk = 0, (2.44)

Figure 2.5: Free body diagram for cart 1 of the double MSD
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Figure 2.6: Free body diagram for cart 2 of the double MSD

where n is the total number of voltages measured, i.e. the sum of voltages around a loop is
equal to zero. The following sources of voltage are apparent in this circuit:

• Battery voltage, VB = V (input),

• Resistor voltage, VR = iR (Ohm’s law),

• Inductor voltage, VL = Ldi
dt ,

• Electromotive voltage, Vemf = kv dθdt .

Note that the electromotive voltage constant is determined by the flux density of the perma-
nent magnet (back-emf constant). Writing Kirchhoff’s Voltage law for the system yields the
following balance:

V = VR + VL + Vemf

V = iR+ L
di

dt
+ kv

dθ

dt
,

(2.45)

where term R is the resistance, and L is the inductance. Note that the current is the time
derivative of the charge, i.e. i = dq

dt , so that the equation can also be written as V =

Lq̈ +Rq̇ + kv ˙theta.

Figure 2.7: Electrical circuit of a DC motor, with resistor (R), inductor
(L), and battery (v)
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Then, Recall that Newton’s second law for rotational systems is written as
∑
T = Iθ̈ (Net

external torque = I × angular acceleration). In the considered mechanical system, the output
torque is T = kti, where kt is the torque constant, and the damping torque is Td = B dθ

dt , where
B is the damping coefficient. Note that the damping torque always opposes the motion, and
is therefore reflected in the equation of motion with a negative sign:

kti−B
dθ

dt
= I

d2θ

dt2
. (2.46)

The dynamics of the electromechanical system for the DC motor are written in matrix form
as follows:

d

dt

[
θ̇
i

]
=

[ −B
I

kt
I

−kv
L

−R
L

] [
θ̇
i

]
+

[
0
1
L

]
V. (2.47)

Finally, by defining the state vector x = [θ̇ i]T and input u = V , the state-space representation
of this system is written as

ẋ = Ax+Bu, (2.48)

where

A =

[ −B
I

kt
I

−kv
L

−R
L

]
, B =

[
0
1
L

]
(2.49)

2.6 The eigenvalue problem
In the absence of damping and applied loading, the previous EOM for an undamped free
vibration can be assumed to have a harmonic solution of the form {x} = {V } sinωt, where {V }
is a column vector (the eigenvector) called the mode shapes, and ω is the natural frequency.

Differentiating the assumed harmonic solution and plugging into the EOM yields the following:

− ω2[M ]{V } sinωt+ [K]{V } sinωt = 0. (2.50)

After simplification, this becomes the following expression, which is called the eigenequation:

Definition: The eigenequation for M-DOF harmonic oscillators

(
[K]− ω2[M ]

)
{V } = 0. (2.51)

Note the similarity to the general eigenvalue problem, which is characterized by [A−ζI]u = 0.

The trivial solution is obtained when det
[
K]− ω2[M ]

)
6= 0, with {V } = 0. Hence, solving

det
(
[K]− ω2[M ]

)
= 0 or det ([K]− ζ[M ]) = 0, where ζ = ω2 in the solution of the eigenvalue

problem.
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In MATLAB, this can be solved by the code [V,D] = eig(u K), where V = [V ] is a matrix
containing the eigenvectors / mode shapes, D = [D] is a diagonal marix containing the
eigenvalues, and the operation u > K is equivalent to [K][M ]−1.

So, for a 2-DOF system such as the one we examined, solving the eigenvalue problem will yield
eigenvalues ζ = ω2 so that ζ1 = D(1, 1) = ω2

1 with mode shape V (:, 1), and ζ2 = D(2, 2) = ω2
2

with mode shape V (:, 2).

Example

We conclude the analysis by illustrating an example. To this end, assume our system
is characterized by the following parameters:

m1 = m2 = 1 kg

k1 = k3 = 1 N m−1

k2 = 2 N m−1.

(2.52)

Following the expressions above, this will yield (check this yourself!):

ω1 = 1 rad s−1, with {V } =

[
−−0.7071 m
−−0.7071 m

]
ω2 = 2.2361 rad s−1, with {V } =

[
−−0.7071 m
−0.7071 m

] (2.53)

2.6.1 Physical meaning of the eigenvalue problem
According to wave theory, a mode is a standing wave state of excitation, in which all system
components will be affected sinusoidally under a specified fixed frequency. The mode is
characterized by a modal frequency and a mode shape.

2.6.2 Simplified 4-story building example (4-DOF)
In this example, we consider a so-called shear-type building model, and we model the walls as
springs resisting the motion of each floor in the lateral direction x. We assume that all the
mass of the building is lumped at the floor levels. Floor beams are rigid, and columns (walls)
are axially rigid, i.e. they do not deform in the y-direction.

The EOM of the building model are given as follows:

m1ẍ1 = 2k1(x2 − x1)

m2ẍ2 = 2k1(x1 − x2) + 2k2(x3 − x2)

m3ẍ3 = 2k2(x2 − x3) + 2k3(x4 − x3)

m4ẍ4 = 2k3(x3 − x4)− 2k4x4.

(2.54)

In standard matrix form, [M ]{ẍ}+ [K]{x} = 0, this yields
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[M ] =


m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

 , [K] =


2k1 −2k1 0 0
−2k1 2(k1 + k2) −k2 0

0 −2k2 2(k2 + k3) −2k3

0 0 −2k3 2(k3 + k4)

 .
(2.55)

Example

Consider the model of the 4-story building, and let m1 = 1500 kg, m2 = 3000 kg, m3 =
3000 kg, m4 = 4500 kg, and k1 = 400 kN m−1, k2 = 800 kN m−1, k3 = 1200 kN m−1,
k4 = 1600 kN m−1.
You should be able to find the 4 modal shapes as presented in Figure 2.8. The corre-
sponding natural frequencies are ω1 = 10.9 rad s−1, ω2 = 24.2 rad s−1, ω3 = 33.6 rad s−1,
and ω4 = 45.6 rad s−1.

(a) Mode 1 (b) Mode 2

(c) Mode 3 (d) Mode 4

Figure 2.8: Modal shapes and natural frequencies and building example
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3 Kuramoto Oscillators

3.1 Introduction
This is a (simple) mathematical model that can describe synchronization for (large) sets of
coupled oscillators (aside: refer to the previous example of a Wilberforce pendulum).

3.1.1 Mechanical Analog
In order to study this system, a group of particles constrained to move along an unit circle,
without colliding. Each of these has an angle θ and a frequency θ̇, as well as inertial and
damping coefficients Mi > 0 and Di > 0, respectively. Hence, external forces are: a viscous
damping force opposing the velocity vector, equal to Diθ̇i; an external driving torque τi ∈ R;
and an elastic restoring force kij sin (θi − θj) between pairs of particles (see Figure 3.1; note
that kij = kji > 0).

Figure 3.1: Mechanical analog

Based on this, we can write then the equation of motion as,

Miθ̈i +Diθ̇i = τi −
n∑
j=1

kij sin (θi − θj), for i ∈ [1, . . . , n] (3.1)

For small masses Mi and uniformly-high viscous damping Di, the relationship Mi
Di
≈ 0, and

the EoM becomes,

θ̇i = ωi −
n∑
j=1

aij sin (θi − θj) (3.2)

where ωi = τi
Di

are the natural rotational frequencies and aij =
kij
Di

are the coupling strengths.
Thus, the following conclusions can be drawn,
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• Weakly coupled and strongly heterogenous network (i.e., with strongly dissimilar natural
frequencies) does not display any coherent behavior;

• Strongly coupled and sufficiently homogeneous network is amenable to synchronization
when all frequencies θ̇i(t) become aligned.

The most popular form of the Kuramoto model is,

θ̇i = ωi −
K

n

n∑
j=1

sin (θi − θj), for i ∈ [1, . . . , n]. (3.3)

This model considers uniform weights aij = K
n . Kuramoto (1975) showed that the synchro-

nization takes place if K exceeds a certain threshold value Kcritical, which is a function of the
distribution of the rotational frequencies ωi.

3.1.2 Pseudocode
The theory described up to now can be easily programmed to find the behavior of such
systems.

Pseudocode 4: Kuramoto Model
1: Set n, K, and the number of iterations;
2: Pre-allocate memory for θ = zeros(n, iterations) and ω = rand(n,1);
3: Populate the first column of θ (first iteration) with the random initial positions
θ(:, 1) = 2 · π · rand(n, 1);

4: Run the loop over a number of iterations, use RK-4 to integrate the ODE numerically
f = ω + K

n

∑n
j=1 sin (θj − θi) for the Kuramoto function [θ(i, j),K, n, ω].

The question is how can we perform the sum operation element-wise? Let’s look at the
function definition:

1. We pass θ(:, j) that is a column vector of size (n, 1);

2. K and n are scalar constants, while ω is also of size (n, 1);

3. Look into Matlab’s sum function (Matlab SUM help); what we need is the sum of
the sine of each pair of angles θi and θj . This can be done by assembling a matrix
θ(:, 1) · ones(1, n) of size (n, n) and subtracting from this a matrix ones(n, 1) · θ(:, 1)T

of equal size;

4. Therefore, if ω is a column vector, the operation can be completed to yield a (n, 1)
vector of θ values;

5. Calculate the Cartesian positions x = sin θ and y = cos θ and plot the kinematics.

3.1.3 Examples
Several phenomena and applications can be explained using the Kuramoto coupled oscillator
model:

• Biological synchronization and rhythmic phenomena;
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• Physical systems (e.g. coupled metronomes (Synchronization of metronomes), chemical
oscillators);

• Networks (e.g. opinion dynamics, decision making in animal groups);

• Power systems, and the list goes on...

3.2 Electrical Power Networks
Synchronization refers to the process of matching the speed and frequency of a generator (or
other source) to a running AC power network. An AC generator cannot deliver power to the
electrical grid unless it runs in the same frequency as the network.

Definition: Synchronous speed

In an AC network with a supply frequency f [Hz], the speed of rotation [rpm] of
the magnetic field in a generator with a number of poles p is (attention, the speed of
rotation of the shaft may be different!),

ns =
120f

p
(3.4)

The forces and moments acting on the system are: the electromagnetic torque (Te); the
electromagnetic power (Pe = Teωm; the mechanical torque (Tm); the mechanical power (Pm =
Tmωm. The terms ωm and ωs are the rotor and the synchronous (see Definition) angular
velocities, respectively.

3.2.1 Networks with Synchronous Generators
The swing dynamics for the electromagnetic system are,

Miθ̈i +Diθ̇i = Pm,i −
n∑
j=1

kij sin (θi − θj) (3.5)

where Pm,i > 0 is the mechanical power input. Another form of the swing equation (for
synchronous machines) can be derived from the electromagnetic system (refer to earlier section
on DC motors for comparison).

I
d2θm
dt2

= Ta = Tm − Te (3.6)

where I is the rotor’s moment of inertia, Ta is the net accelerating torque and θm is the
angular position of the rotor with respect to the stationary axis.
Relative to a synchronously frame (with frequency ωs), the angular position is ωm = ωst+δm,
where δm is the angular position with respect to the synchronously rotating frame. Taking
the time derivatives of this last expression yields

dωm
dt

= ωs +
dδm
dt

. (3.7)
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In other words, synchronization will only take place when dδm
dt = 0. This term represents

the deviation of the rotor speed from the synchronization (leading later to the concept of
slip = ωs−ωm

ωs
). If now we take the second derivative and introduce this in the EoM, we get

d2ωm
dt2

=
d2δm
dt2

(3.8)

I
d2δm
dt2

= Ta = Tm − Te. (3.9)

Let us define ωm = dθm
dt as the angular velocity of the rotor, and multiply this with both sides

of the equation,

Iωm
d2δm
dt2

= Taωm = (Tm − Te)ωm. (3.10)

The torque terms on the right-hand side of the equation represent the accelerating, mechanical
and electric power, respectively. At the synchronous speed we can define the parameter H,
the inertia constant of the machine as,

H =
Stored kinetic energy at synchronous speed

Machine rating

[MJ ]

[MVA]
=

Iω2
s

2Srated
[s] (3.11)

where Srated is the three-phase rating of the machine, while the relationship between the
electrical and mechanical power angles is δ = p

2δm, and ω = p
2ωm is the relationship between

electrical and mechanical speeds (p being the number of poles).
In steady-state conditions ωm = ωs, such that,

2H

ωs

d2δ

dt2
= Pa = Pm − Pe [per − unit]1. (3.12)

Let us now take a look at the simplest form of the swing equation and grouping in M , a
constant of the machine,

M
d2δ

dt2
= Pa = Pm − Pe −→

d2δ

dt2
=
Pa
M
. (3.13)

We can use this to determine the transient stability, i.e. whether or not synchronism is main-
tained after the machine has been subjected to severe disturbance (e.g. a sudden application
of load, loss of generation, loss of a large load, or a fault in the system).
Adding damping to the system yields (compare it with Eq. 3.5),

M
d2δ

dt2
+D

dδ

dt
= Pm − Pe. (3.14)

1The electrical power angle δ is the angle of the generator’s internal electromagnetic field, also called the
load angle.
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If we have synchronous machines, their EoM’s will then be,

M1
d2δ1

dt2
+D1

dδ1

dt
= Pm,1 − Pe,1 = Pm,1 − a1,2 sin (δ1 − δ2) (3.15a)

M2
d2δ2

dt2
+D2

dδ2

dt
= Pm,2 − Pe,2 = Pm,2 − a2,1 sin (δ2 − δ1). (3.15b)

Equivalently,

Miδ̈i +Diδ̇i = Pm,i −
n∑
j=1

aij sin (δi − δj) and ai,j = aj,i (3.16)

In the case of our example with two machines,

2∑
j=1

aij sin (δi − δj) = a11((((
((sin (δ1 − δ1) + a12 sin (δ1 − δ2) for i = 1 (3.17)

If the system runs at steady-state conditions θi = δi (ωs = ωm).

Definition: State variable representation

Let dδi
dt = δ̇i = ∆ωi so that d2δi

dt2
= d

dt(∆ωi). Hence,

Mi
d

dt
(∆ωi) +Di∆ωi = Pm,i −

n∑
j=1

aij sin (δi − δj) (3.18a)

d

dt
(∆ωi) = −Di

Mi
∆ωi +

Pm,i
Mi
− 1

Mi

n∑
j=1

aij sin (δi − δj) (3.18b)

For two synchronous machines,a

d

dt


δ1

∆ω1

δ2

∆ω2

 =


0 1 0 0

0 −D1
M1

0 0

0 0 0 1

0 0 0 −D2
M2

 ·

δ1

∆ω1

δ2

∆ω2

+


0

Pm,1

M1
− a1,2

M1
sin (δ1 − δ2)

0
Pm,2

M2
− a2,1

M2
sin (δ2 − δ1)

 (3.19)

aai,j = aj,i
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4 Systems and Control Volumes
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5 Linear Viscoelasticity
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6 Fluid Dynamics
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7 Heat Transfer and Reaction Kinetics
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7.1 Boundary and Initial Conditions
The Boundary and Initial Conditions are a set of additional qualitative and quantitative
constraints which are also solution of the Partial Differential Equations (PDE’s) and help
defining the conditions under which the system works. In heat transfer we can find three
different type of boundary conditions: Dirichlet, Neumann and Robin.

1. Dirichlet or First Type: the value of the variable is defined in the boundary. In
other words, there is a constant surface temperature at the boundary which is given by
T (0, t) = Ts.

2. Neumann or Second Type: the value of the derivative if defined in the boundary. This
essentially implies there is a constant surface heat flux. If there is a finite heat flux,
then it is given by −k ∂T∂x |x=0. When there is a adiabatic or insulated surface, then it is

given by ∂T
∂x |x=0 = 0

3. Robin or Third Type: usually used in convection, the heat transfer by convection is
defined in the boundary which is simply the convection surface condition and is given
by −k ∂T∂x |x=0 = h[T∞ − T (0, t)].

7.2 Heat Diffusion Equation - Solutions
We have defined the differential equations and the BC’s and IC’s, so the “only” thing we
need to do is to solve them. Generally speaking, we can find two types of solutions. . .

• Analytical: the PDE is completely solved, finding a function of one or several variables.
This type of solution is restricted to very few, specific cases;

• Numerical: we do not solve the PDE, but we find the solution of something that “looks
like” the PDE. Therefore, the solution is approximate. . . But how do we approximate
the solution?

There are many different approaches nowadays with computers, but in almost all the numer-
ical techniques (the exception are the meshfree methods) our domain in study is discretized
in a mesh with a finite number of points in which the PDE is solved... how does this look???

The most commonly used numerical techniques in heat transfer are. . .

• Finite Difference Methods (FDM): we transform every derivative into approximate re-
lationships between the variables in study (see Appendix A for more information on
FDM). The approximation is in the derivative;

• Finite Element Methods (FEM) or Finite Volume Methods (FVM): in this case we do
not approximate every derivative but we approximate the solution of the PDE. The
approximation is in the solution of the PDE;

• Boundary Element Methods (BEM): based on finding the solution of boundary inte-
gral equations, solutions of the PDE, using only the values at the boundaries. Once
the solution of this equation is found, the values in the whole domain are obtained
straightforwardly.

The easiest and most commonly numerical technique used/taught is the FDM. If we apply
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this concept to a generic point inside the domain (m,n) we get,

∂2T

∂x2

∣∣∣∣
m,n

≈
∂T
∂x

∣∣
m+ 1

2
,n
− ∂T

∂x

∣∣
m− 1

2
,n

∆x
=
Tm−1,n − 2Tm,n + Tm+1,n

∆x2
(7.1)

∂2T

∂y2

∣∣∣∣
m,n

≈
∂T
∂y

∣∣
m,n+ 1

2
− ∂T

∂x

∣∣
m,n− 1

2

∆y
=
Tm,n−1 − 2Tm,n + Tm,n+1

∆y2
(7.2)

Inserting this into the Laplace equation,

Tm+1,n + Tm,n+1 + Tm−1,n + Tm,n−1 − 4Tm,n = 0 (7.3)

And into Poisson,

Tm+1,n + Tm,n+1 + Tm−1,n + Tm,n−1 +
Ėtrans,m,n∆x2

k
− 4Tm,n = 0 (7.4)

7.2.1 Transient Problems
The addition of the time derivatives in transient problems usually complicates everything
(golden rule in numerical simulation! ), since the solution of the PDE becomes dependant on
this derivative. In this case, the time derivative is approached using,

∂T

∂t

∣∣∣∣
m,n

≈
T k+∆t
m,n − T km,n

∆t
(7.5)

and then...

1

α

T k+∆t
m,n − T km,n

∆t
=
Tm−1,n − 2Tm,n + Tm+1,n

∆x2
+
Tm,n−1 − 2Tm,n + Tm,n+1

∆y2
+
Ėtrans,m,n

k
(7.6)

But now there is problem... the spatial derivatives and the heat addition must also be ap-
proximated to a specific time-step. This gives us three options. . .

• Explicit (Euler Explicit): the values used are those from the previous time-step (k)...
Easier to solve but is not unconditionally stable. Thus, oscillations may appear in the
solution, which are not physically possible. These may grow boundlessly, making the
whole simulation to crash.

• Implicit (Euler Implicit): the values used are those from the time-step being calcu-
lated (k + ∆t). Harder to solve, but these are usually unconditionally stable (i.e., no
oscillations!).

• A linear combination of the previous ones (Crank-Nicolson).

Explicit

1

α

T k+∆t
m,n − T km,n

∆t
=(

Tm−1,n − 2Tm,n + Tm+1,n

∆x2
+
Tm,n−1 − 2Tm,n + Tm,n+1

∆y2
+
Ėtrans,m,n

k

)k
(7.7)
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1

Fo

(
T k+∆t
m,n − T km,n

)
=(

Tm−1,n + Tm+1,n + Tm,n−1 + Tm,n+1 + 4Tm,n +
Ėtrans,m,n∆x2

k

)k
(7.8)

With the Fo Fourier number being defined by,

Fo =
α∆t

∆x2
(7.9)

Implicit

1

Fo

(
T k+∆t
m,n − T km,n

)
=(

Tm−1,n + Tm+1,n + Tm,n−1 + Tm,n+1 + 4Tm,n +
Ėtrans,m,n∆x2

k

)k+∆t

(7.10)

Crank-Nicolson

1

α

T k+∆t
m,n − T km,n

∆t
=

1

2

(
Tm−1,n − 2Tm,n + Tm+1,n

∆x2
+
Tm,n−1 − 2Tm,n + Tm,n+1

∆y2
+
Ėtrans,m,n

k

)k
+

1

2

(
Tm−1,n − 2Tm,n + Tm+1,n

∆x2
+
Tm,n−1 − 2Tm,n + Tm,n+1

∆y2
+
Ėtrans,m,n

k

)k+∆t

(7.11)

7.2.2 Solving the Heat Equation for a Rod
We consider a square plate with lengths x by y, and assume that we can neglect the thickness
z = 0. The square plate is connected to a heat source at one of its bases. We are interested in
the temperature distribution of the rod in both dimensions as function of time. The change
of heat in the body is determined by the inflow and outflow of heat. In other words, we have

∂T

∂t
= In−Out

= Qx +Qy −Qx+dx −Qy+dy,
(7.12)

where

Qx+dx = Qx +
∂Q

∂x
dx

Qy+dy = Qy +
∂Q

∂y
dy,

(7.13)
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which yields the following equation:

− ∂Q

∂x
dx− ∂Q

∂y
dy =

∂T

∂t
. (7.14)

The thermal conductivity k is given in the units of W m−1 K−1. To express the heat transfer
in Watt for this specific plate, we need to multiply with the corresponding factors:

Qx = −kAx
∂T

∂x

Qy = −kAy
∂T

∂y
,

(7.15)

where the areas are given by Ax = xdy and Az = ydx. Combining the equations yields:

− ∂

∂x

(
− kAx

∂T

∂x

)
dx− ∂

∂y

(
− kAy

∂T

∂y

)
dy = ρrCp

∂T

∂t
(7.16)

∂2T

∂x2
+
∂2T

∂y2
=

1

α

∂T

∂t
(7.17)

Numerical solution
In order to calculate the numerical solution to the heat equation for the rod, we discretize
Equation 7.17 using indices i, j, and k, where i and j are spatial dimensions for x and y,
respectively, and k represents time:

∂2T

∂x2
≈
T ki−1,j − 2T ki,j + T ki+1,j

∆x2
(7.18a)

∂2T

∂y2
≈
T ki,j−1 − 2T ki,j + T ki,j+1

∆y2
(7.18b)

∂T

∂t
≈
T k+1
i,j − T ki,j

∆t
(7.18c)

Putting together all equations to solve for T (i, j) at k + 1, we obtain:

T k+1
i,j = T ki,j + α∆t

(
T ki−1,j − 2T ki,j + T ki+1,j

∆x2
+
T ki,j−1 − 2T ki,j + T ki,j+1

∆y2

)
, (7.19)

where Equation 7.18c is rewritten such that T k+1
i,j becomes the left hand side of Equation 7.17,

and the other approximations in Equation 7.18 are used to approximate the other partial
derivatives.
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Finally, for stability of this explicit scheme, we set

∆t ≤ min(x2, y2)

4α
. (7.20)

Hence, we require that the maximum ∆t depends on the square of dimension x if x < y, and
on the square of dimension y otherwise.

7.2.3 Pseudocode

Pseudocode 5: Heat Transfer
1: Set ∆t, ∆x ∧∆y, k, cp, ρ, q̇(x, y), minerror and maxtime;
2: Initial Condition T 0

x,y;

3: Boundary Condition T ∀tx,y = T ∨ ∂T
∂n

∀t
= Q ∀(x, y) ∈ boundary;

4: α = k
ρcp

;

5: Fo = α∆t
∆x2

;
6: t = ∆t;
7: while t ≤ maxtime do
8: Assembly Temperature vector ~C = (T t−∆t

1 , T t−∆t
2 , · · · , T t−∆t

n );
9: Assembly Conductivity/Temperature matrix A;

10: if Solver = Direct then
11: Find A−1;

12: T t = A−1 · ~C;
13: else
14: while error ≥ minerror do
15: Solve linear system (e.g., Gauss-Seidel, Jacobi, SOR);
16: Calculate error ‖∆~T‖;
17: end while
18: end if
19: plot(T ,x, y);
20: t = t+ ∆t;
21: end while
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Example

Do the same analysis with the following reactions...

2 A
k1
k2

2 B + C

A + B
k3
k4

2 D

B + D
k5
k6

E

In the solution procedure of these systems, an important concept of matrix plays an important
role: the stoichoimetric matrix rank.

Definition: Rank of a matrix

The rank of a matrix is defined as the maximum number of linearly independent column
vectors in the matrix, or the maximum number of linearly independent row vectors in
the matrix.

Using this concept, we can reduce the number of equations to be solved in the system,
rendering an easier system to model the reaction kinetics. Let’s consider a different system,

A + B
k1
k2

C

C + C
k3
k4

D

Thus, we assembly the stoichoimetric matrix and the rate vector,

d

dt
~C(t) =


−1 −1 1 0
1 1 −1 0
0 0 −2 1
0 0 2 −1


T

·


k1[C]a[C]b
k2[C]c
k3[C]2c
k4[C]d

 (7.21)

If you analyze the stoichiometrix matrix in the previous equation, you will see it is not a full
rank matrix, but one of rank 2. This means that the system can be solved using only two
rows of the matrix. We will continue the analysis considering the components C and D.

d[C]c
dt

= k1[C]a[C]b − k2[C]c − 2k3[C]2c + 2k4[C]d (7.22a)

d[C]d
dt

= k3[C]2c − k4[C]d (7.22b)

Since the system has four unknowns and only two linearly independent equations, we need two
more relationships to determine the system. In this case, it is necessary to find an expression
to calculate the concentrations of A and B as a function of the components C and D. In
this case we can also use the mass balance in the equations, assuming the whole process is
confined in a closed system. Then, the total mass at the beginning of the reaction will be
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equal to the sum of the masses in every time step, which can be also expressed as function of
concentration and molar masses. Thus,∑

i

mi
0 =

∑
i

mi (7.23)

∑
i

Ci0M
i
mol =

∑
i

CiM i
mol (7.24)

and therefore,
α · ~Mmol = ~0 (7.25)

Then, applying this to the example we get,

α · ~Mmol = ~0 −→

−Mmol,a −Mmol,b +Mmol,c = 0

−2Mmol,c +Mmol,d = 0
(7.26)

Furthermore, the initial mass is equal to,∑
i

mi
0 = [C]0,aMmol,a + [C]0,bMmol,b (7.27)

and the mass after a certain period of the reaction,∑
i

mi = [C]aMmol,a + [C]bMmol,b + [C]cMmol,c + [C]dMmol,d (7.28)

Finally, we can find a relationship between the concentration of A and B as a function of
initial masses and the concentrations of products C and D.

[C]a = [C]0,a − [C]c − 2[C]d (7.29a)

[C]b = [C]0,b − [C]c − 2[C]d (7.29b)

As it was mentioned before, these type of ODE systems have either an analytical or numerical
solution. However, in chemical kinetics it is always possible to find an analytical solution if a
reaction model is a linear system of first-order ODE’s. A sequence of elementary first-order
reaction steps is an example of such system. In order to analyze this, we will use the following
example,

B
k1

A
k2

C
k3
k4

D

With this model, we can set up the set of differential equations corresponding to the reaction
steps,

d

dt


[C]a(t)
[C]b(t)
[C]c(t)
[C]d(t)

 =


−1 1 0 0
−1 0 1 0
0 0 −1 1
0 0 1 −1


T

·


k1[C]a(t)
k2[C]a(t)
k3[C]c(t)
k4[C]d(t)

 (7.30)

The first step in this technique consists in rearrange the stoichoimetric matrix and rate vector
in order to leave only the concentrations in the vector. Thus,
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d

dt


[C]a(t)
[C]b(t)
[C]c(t)
[C]d(t)

 =


− (k1 + k2) 0 0 0

k1 0 0 0
k2 0 −k3 k4

0 0 k3 −k4

 ·


[C]a(t)
[C]b(t)
[C]c(t)
[C]d(t)

 (7.31)

d

dt
~[C](t) = kv · ~[C](t) (7.32)

The solution to this system of ODE’s has the following form,

~[C](t) = e(k
vt) ~[C]0 (7.33)

The solution presented though it looks simple, has a major problem: how to calculate the
exponent of the reaction matrix? We use for this purpose two familiar concepts: eigenvalues
and eigenvectors. According to the properties of these,

kv · ~Xn = λn · ~Xv (7.34)

where λn is the nth elements of the eigenvalues vector and ~Xn is the nth column of the matrix
of eigenvectors. Moreover, we can replace the matrix kv by a system of matrices, which is
known as diagonalization of the matrix,

Definition: Diagonalization of a matrix

A ∈ Fn×n is diagonalizable ⇐⇒ ∃P, P−1 ∈ Fn×n : P−1AP is diagonal

Applying this definition to the system we obtain,

e(k
vt) = X · e(Λt) ·X−1 (7.35)

The matrix related to the reaction rates was replaced then by a system of matrices in which
X is the matrix form by the eigenvectors of the the original matrix and Λ is a diagonal matrix
whose elements are the eigenvalues of the original matrix. Thus,

e(Λt) =


eλ1t 0 · · · 0

0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt

 (7.36)

This allows transforming our system of ODE’s into the following equation,

~[C](t) = X · e(Λt) ·X−1 · ~[C]0 (7.37)

Thus, our original system of ODE’s was reduced to find the eigenvalues and eigenvectors.
The diagonal matrix with the eigenvalues is equal to,

Λ =


−(k1 + k2) 0 0 0

0 0 0 0
0 0 0 0
0 0 0 −(k3 + k4)

 (7.38)
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And subsequently, the matrix of eigenvectors associated to these eigenvalues is presented
hereafter. It is noteworthy that in this case special attention should be paid in order to get
the nth eigenvalue aligned with the nth column of the matrix of eigenvectors.

X =


(k1 + k2)k1+k2−k3−k4

k2k3
0 0 0

−k1
k1+k2−k3−k4

k2k3
0 1 0

−k1+k2−k4
k3

k4
k3

0 −1

1 1 0 1

 (7.39)

X−1 =


k2k3

(k1+k2)(k1+k2−k3−k4) 0 0 0

k2k3
(k1+k2)(k3+k4) 0 k3

k3+k4
k3

k3+k4
k1

k1+k2
1 0 0

− k2k3
(k3+k4)(k3+k4) 0 − k3

k3+k4
k4

k3+k4

 (7.40)

Therefore, the final system and analytical solution of the concentration in this multi-step
reaction is as follows,

[C]a(t)

[C]b(t)

[C]c(t)

[C]d(t)

 =


(k1 + k2)k1+k2−k3−k4

k2k3
0 0 0

−k1
k1+k2−k3−k4

k2k3
0 1 0

−k1+k2−k4
k3

k4
k3

0 −1

1 1 0 1

 ·

e[−(k1+k2)]t 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e[−(k3+k4)]t

 ·

·


k2k3

(k1+k2)(k1+k2−k3−k4) 0 0 0

k2k3
(k1+k2)(k3+k4) 0 k3

k3+k4
k3

k3+k4
k1

k1+k2
1 0 0

− k2k3
(k3+k4)(k3+k4) 0 − k3

k3+k4
k4

k3+k4

 ·


[C]0,a

0

0

0

 (7.41)

[C]a(t) = e−(k1+k2)t[C]0,a (7.42a)

[C]b(t) =

[
−k1

e−(k1+k2)t

k1 + k2
+

k1

k1 + k2

]
[C]0,a (7.42b)

[C]c(t) =

[
(k4 − k1 − k2)

e−(k1+k2)t

(k1 + k2)(k1 + k2 − k3 − k4)
k2 +

k2k4

(k1 + k2)(k3 + k4)
+ ...

e−(k3+k4)t k2k3

(k3 + k4)(k1 + k2 − k3 − k4)

]
[C]0,a

(7.42c)

[C]d(t) =

[
e−(k1+k2)t k2k3

(k1 + k2)(k1 + k2 − k3 − k4)
+

k2k3

(k1 + k2)(k3 + k4)
− ...

e−(k3+k4)t k2k3

(k3 + k4)(k1 + k2 − k3 − k4)

]
[C]0,a

(7.42d)
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Example

Plot the behavior of the analyzed multi-step reaction using the following values (until
you observe a steady-state system): k1 = 0.5[s−1], k2 = 0.25[s−1], k3 = 1[s−1], k4 =
2[s−1] and [C]0,a = 1[mol/m3]
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A Discretization

In this Appendix, we give an introduction to some discretization methods. We start by
highlighting why discretization is relevant for many engineering problems, and discuss some
basic properties. Then, the concept of the mesh is introduced, and we discuss how it is
applied to discretize different types of problems, including different formulations of the finite
difference method.

A.1 Why discretization?
As you will have seen by now, many problems in engineering cannot be solved analytically.
Especially problems involving Navier-Stokes, diffusion and waves are difficult to solve in
multiple dimensions or with coupled physics as these are typically PDEs. Analytical solutions
are often only obtainable if one reduces the problem using restrictive assumptions, thereby
often rendering the problem devoid of practical interest.

When we are interested in the behavior of a physical system of which the behavior is dependent
on space and time and need to solve it numerically, we employ discretization. In essence we
are decomposing a continuous set of equations describing this system into discrete elements
which can be evaluated using a numerical scheme. By calculating these elements in time and
space we can then evaluate system behavior, whether that be steady state or its dynamics.

Various discretization methods exist. In this appendix we will limit the discussion to the
discretization of a partial differential equation using the finite difference method. The origin
of this method can be found in the early works of the mathematicians Euler and Kutta, and
is similar to the Runge-Kutta family of numerical methods employed in solving ODEs. For
PDEs, the finite difference methods consist in approximating the differential operator in an
equation using differential quotients to replace the derivatives in the equation. By doing
so we are partitioning the domain in space and time. The difference between the differential
operator and differential quotient is a measure for the error of the numerical solution compared
to the analytical solution; this is often known as the truncation error.

In essence, Figure Figure A.1 describes the workflow of discretizing a PDE using the finite
difference method.

Figure A.1: General workflow of discretization methods
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Example

Suppose we wish to approximate u at a point x. Assuming u(x) is a smooth differen-
tiable function, we can assess the derivative of u around x for step size h as follows:

∂u

∂x
= lim

h→0

u(x+ h)− u(x)

h
. (A.1)

As one would expect, as h becomes smaller the approximation on the right hand side of the
equation becomes more accurate. Equation A.1 illustrates the basic concept behind the finite
difference schemes, which we shall further explain later.

A.2 Generating the mesh
Discretizing the domain means we will end up with a series of points in space and time which
are evenly spaced. Suppose we are interested in the temperature distribution over time in a
rod along its length L, which we shall call the x-direction, then we would obtain the following:

0 ≤ x ≤ L (A.2)

xi = (i− 1)∆x for i = 1, 2, · · · , N, (A.3)

where n represents the amount of grid points. Based on L and N , we can then determine
∆x:

∆x =
L

N − 1
. (A.4)

Similar equations hold for discretizing time:

0 ≤ t ≤ tfinal (A.5)

tk = (k − 1)∆t for k = 1, 2, · · · ,K, (A.6)

where K denotes the number of time steps, and ∆t refers to the size of the time step given
by

∆t =
tfinal

K − 1
. (A.7)

The above can be visualized in a grid known as a mesh, as shown in Figure A.2. In this
figure, the horizontal axis represents the x-direction of the rod (along its length L), and the
vertical axis represents steps through time. For each time step, we calculate all grid points
i. In other words, at t = 0, we start in the bottom left corner and initialize the solution
vector with the green rectangles, as these should be known, because we need to start at some
determined value (initial value). Now, we move to the second row and start calculating the
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blue grid points based on the finite different scheme; row k is assessed using row k − 1. As
calculation of a grid point often depends on its neighbors in the x-direction in the previous
time step, we need to specify the values at the boundaries of the mesh. These are called the
boundary conditions (indicated by the red rectangles), and need to be specified at both x = 0
and x = L, for each time t > 0.

A.3 First order forward difference
In this section we will cover the first order forward difference scheme, which is derived from
a Taylor series expansion u(x) around a point xi:

∂u

∂x

∣∣∣∣
xi

≈ ui+1 − ui
∆x

− ∆x

2

∂2u

∂x2

∣∣∣∣
xi

− ∆x2

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · . (A.8)

Replacing the higher order terms using the mean value theorem, we obtain the following:

∂u

∂x

∣∣∣∣
xi

≈ ui+1 − ui
∆x

+
∆x2

2

∂2u

∂x2

∣∣∣∣
ε

, (A.9)

where the terms to the right of the difference in u over ∆x in Equation A.9 represent the
truncation error, which results from truncating (cutting off, or neglecting) the higher order
terms in Equation A.8. In general, we de not know what ε is and also cannot compute the
second order term of u with respect to x as the function u(x, t) is not known. To deal with

Figure A.2: Mesh of the heat equation example
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the truncation error, the term O(∆x2) is often used. The O represents the dependence of the
truncation error on the mesh, which we determine prior to simulation:

∆x2

2

∂2u

∂x2

∣∣∣∣
ε

= O(∆x2). (A.10)

Rewriting Equation A.9 then yields

Definition: First order backward difference equation

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui

∆x
+O(∆x). (A.11)

Note that ∆x2 was replaced with ∆x as the right hand side of Equation A.10 is not meant
as a strict equality; it shows the dependence of the order of magnitude of the error, and how
is approaches zero as function of the meshing.

Equation A.11 is called the forward difference equation because it utilizes the nodes i and
i+ 1.

A.4 First order backward difference
If we replace the use of ∆x in Equation A.8 with −∆x, then we obtain the backward difference
equation:

∂u

∂x

∣∣∣∣
xi

≈ ui − ui − 1

∆x
+

∆x

2

∂2u

∂x2

∣∣∣∣
xi

− ∆x2

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · . (A.12)

ui−1 = ui −∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2

∂2u

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · . (A.13)

Again, truncating the higher order terms and using O notation, we obtain

Definition: First order backward difference equation

∂u

∂x

∣∣∣∣
xi

=
ui − ui − 1

∆x
+O(∆x), (A.14)

where we can see why it is called the backward difference, as it depends on evaluating nodes
i and i − 1. Note that the truncation error for both the forward and backward difference
equation is the same.

79



A.5 First order central difference
The central difference equation is actually a combination of both the forward and backward
difference equations.The main idea is to reduce the truncation error; in the central difference
equation, this error approaches zero much faster as we decrease ∆x, as we will show below.

First, recall the Taylor series expansions for ui+1 and ui−1:

ui+1 = ui + ∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2

∂2u

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · , (A.15)

ui−1 = ui −∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2

∂2u

∂x2

∣∣∣∣
xi

− (∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · . (A.16)

Subtracting Equation A.15 from A.16 yields

ui+1 − ui−1 = 2∆x
∂u

∂x

∣∣∣∣
xi

+
2(∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · . (A.17)

If we solve for ∂u
∂x

∣∣
xi

, we get

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2∆x
− (∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+ · · · , (A.18)

which, with the O notation, leads to the central difference equation:

Definition: First order central difference equation

∂u

∂x

∣∣∣∣
xi

=
ui+1 − ui−1

2∆x
+O(∆x2). (A.19)

As you can see, the truncation error will approach zero much faster than for the forward and
back equations, Equation A.11 and A.14, respectively. However, there is a disadvantage to
the first order central differenc equation, as it does not contain the grid point i. Depending
on the problem, this might cause complications, but further discussion is beyond the scope
of this introductory document.

A.6 Second order central difference
Similar to the first order central difference, the second order central difference equation in-
volves Equation A.15 and A.16 with the appropriate Taylor expansion. Contrary to the first
order difference equation, we are now interested in estimating the second order derivative of
the function. To this end, we write both Taylor expansions up to fourth order:
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ui+1 = ui + ∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2

∂2u

∂x2

∣∣∣∣
xi

+
(∆x)3

3!

∂3u

∂x3

∣∣∣∣
xi

+
∆x4

4!

∂4u

∂x4

∣∣∣∣
xi

+ · · · , (A.20)

ui−1 = ui −∆x
∂u

∂x

∣∣∣∣
xi

+
∆x2

2

∂2u

∂x2

∣∣∣∣
xi

− ∆x3

3!

∂3u

∂x3

∣∣∣∣
xi

+
∆x4

4!

∂4u

∂x4

∣∣∣∣
xi

+ · · · . (A.21)

Instead of subtracting the two Taylor series from each other, we add them together, resulting
in the following expression:

ui+1 + ui−1 = 2ui + ∆x2 ∂
2u

∂x2

∣∣∣∣
xi

+
∆x4

4!

∂4u

∂x4

∣∣∣∣
xi

+ · · · . (A.22)

Rearranging yields

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

∆x2
− ∆x2

4!

∂4u

∂x4

∣∣∣∣
xi

+ · · · . (A.23)

We can see that, after rearranging, the first error term in Equation A.23 contains ∆x2. Hence,
we conclude that the second order central difference equation has error O(∆x2), so we can
write

Definition: Second order central difference equation

∂2u

∂x2

∣∣∣∣
xi

=
ui+1 − 2ui + ui−1

∆x2
+O(∆x2). (A.24)

A.7 Conclusion
The difference equations discussed in this Appendix form the basics of many widely used nu-
merical methods. Throughout this course, we apply both the first and second order difference
equations, for example to approximate PDEs in heat diffusion problems.

To summarize, the derivation of all finite difference equations in this Appendix have followed
the same procedure. First, derive the appropriate Taylor Expansion(s), depending on the
order of the equation you want to estimate. Then, rewrite and solve for the PDE that
you’re estimating. Finally, determine the most dominant error term, containing the time step
variable, ∆xn, and denote the order of the method as O(∆xn). More information

• E.W. Weisstein (2019). ”Finite Difference”. http://mathworld.wolfram.com/FiniteDifference.
html

• H.P. Langtangen (2014). ”Truncation Error Analysis”. http://hplgit.github.io/

INF5620/doc/pub/H14/trunc/html/._main_trunc001.html

• Wikipedia (2018). ”Finite difference method”. https://en.wikipedia.org/wiki/

Finite_difference_method
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