Calculus 2 (IEM)
Midterm Exam I
26 February 2021, 14:00-16:00

The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 1. Your solution to this problem should be written into a single file, named problem1.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

Problem 1 (3 points)

Given are three vector functions

$$
\begin{aligned}
& \boldsymbol{v}_{1}(t)=\left(t, t, t^{2}\right) \\
& \boldsymbol{v}_{2}(t)=\left(t^{2}, t, t\right) \\
& \boldsymbol{v}_{3}(t)=\left(t, t^{2}, t\right)
\end{aligned}
$$

where $t \in(-\infty, \infty)$.
a) Determine the volume $V(t)$ of the parallelepiped spanned by the vectors $\boldsymbol{v}_{1}(t), \boldsymbol{v}_{2}(t), \boldsymbol{v}_{3}(t)$.
b) Verify that $V(-1)=4$ to make sure your result in a) is correct.
c) Determine the values of t for which $V(t)$ is zero.
d) Determine the values of t for which $V(t)$ achieves a local maximum. [You must give a complete argument for full points.]

Calculus 2 (IEM)
Midterm Exam I
26 February 2021, 14:00-16:00

The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 2. Your solution to this problem should be written into a single file, named problem2.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

Problem 2 (2.5 points)

The position of a particle at any moment $t \in[0, \infty)$ is given by

$$
\mathbf{r}(t)=((t-1) \sin t+(t+1) \cos t) \mathbf{i}+((t+1) \sin t-(t-1) \cos t) \mathbf{j}
$$

Determine the following as a function of t :
a) the length $s(t)$ of the path traversed by the particle;
b) the curvature $\kappa(t)$ of the path;
c) the tangential and normal components of acceleration.

Calculus 2 (IEM)
Midterm Exam I
26 February 2021, 14:00-16:00

The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 3. Your solution to this problem should be written into a single file, named problem3.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

Problem 3 (2.5 points)

A projectile is fired from $(0,0)$ at an angle $\theta=\frac{\pi}{3}$ and speed $v_{0}=4$. At the point $(1,0)$ a vertical wall $W=\{(1, t): t \geq 0\}$ is positioned. Assume that (gravitational) acceleration is given by the constant vector $\boldsymbol{g}=-10 \mathbf{j}$ at every point.
a) Determine the position $\mathbf{r}(t)$ of the projectile at time t.
b) Determine the time and point of impact with the wall.
c) Determine the value of the angle α at which the projectile hits the wall. [You may use your calculator to evaluate trigonometric functions.]

Calculus 2 (IEM)
Midterm Exam I
26 February 2021, 14:00-16:00

The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 4. Your solution to this problem should be written into a single file, named problem4.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

Problem 4 (1 point)
Describe (classify) and sketch the following quadric surface:

$$
x^{2}+2 y^{2}-z^{2}-2 x+4 y-4 z+3=0 .
$$

[Hint: Consider completing squares and changing variables by translation.]

