Midterm Exam I

26 February 2021, 14:00–16:00



The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 1. Your solution to this problem should be written into a single file, named problem1.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

# Problem 1 (3 points)

Given are three vector functions

$$\boldsymbol{v}_1(t) = \left(t, \, t, \, t^2\right)$$

$$\boldsymbol{v}_2(t) = \left(t^2, \, t, \, t\right)$$

$$\boldsymbol{v}_3(t) = \left(t, \, t^2, \, t\right)$$

where  $t \in (-\infty, \infty)$ .

- a) Determine the volume V(t) of the parallelepiped spanned by the vectors  $\mathbf{v}_1(t)$ ,  $\mathbf{v}_2(t)$ ,  $\mathbf{v}_3(t)$ .
- b) Verify that V(-1) = 4 to make sure your result in a) is correct.
- c) Determine the values of t for which V(t) is zero.
- d) Determine the values of t for which V(t) achieves a local maximum. [You must give a complete argument for full points.]

Midterm Exam I

26 February 2021, 14:00–16:00



The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 2. Your solution to this problem should be written into a single file, named problem2.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

#### Problem 2 (2.5 points)

The position of a particle at any moment  $t \in [0, \infty)$  is given by

$$\mathbf{r}(t) = ((t-1)\sin t + (t+1)\cos t)\mathbf{i} + ((t+1)\sin t - (t-1)\cos t)\mathbf{j}.$$

Determine the following as a function of t:

- a) the length s(t) of the path traversed by the particle;
- b) the curvature  $\kappa(t)$  of the path;
- c) the tangential and normal components of acceleration.

Midterm Exam I

26 February 2021, 14:00–16:00



The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 3. Your solution to this problem should be written into a single file, named problem3.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

#### Problem 3 (2.5 points)

A projectile is fired from (0,0) at an angle  $\theta = \frac{\pi}{3}$  and speed  $v_0 = 4$ . At the point (1,0) a vertical wall  $W = \{(1,t) : t \geq 0\}$  is positioned. Assume that (gravitational) acceleration is given by the constant vector  $\mathbf{g} = -10\mathbf{j}$  at every point.

- a) Determine the position  $\mathbf{r}(t)$  of the projectile at time t.
- b) Determine the time and point of impact with the wall.
- c) Determine the value of the angle  $\alpha$  at which the projectile hits the wall. [You may use your calculator to evaluate trigonometric functions.]



Midterm Exam I

26 February 2021, 14:00–16:00



The exam consists of four problems, worth nine points in total. You get an additional bonus point, so your score will be between 1 and 10. This file contains only Problem 4. Your solution to this problem should be written into a single file, named problem4.pdf, with correctly ordered and oriented pages. All files containing your solutions need to be uploaded together, under the Midterm Exam assignment in the Exam - Calculus 2 (IEM) environment on Nestor, before 16:30 (UTC+1).

# Problem 4 (1 point)

Describe (classify) and sketch the following quadric surface:

$$x^2 + 2y^2 - z^2 - 2x + 4y - 4z + 3 = 0.$$

[Hint: Consider completing squares and changing variables by translation.]