Calculus 2 (IEM)

Midterm Exam II

12 March 2021

Problem 1

Given is a surface in \mathbb{R}^{3} whose equation in cylindrical coordinates is

$$
z=r \cos 3 \theta
$$

a) Convert the given equation from cylindrical coordinates (r, θ, z) to Cartesian coordinates (x, y, z) to define a function $z=f(x, y)$.
b) Show that the function f defined in a) is continuous at $(0,0)$.
c) Determine whether f is differentiable at $(0,0)$.

Solution

Cylindrical coordinates are given by $(x, y, z)=(r \cos \theta, r \sin \theta, z)$.
a) Using $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$ and $r^{2}=x^{2}+y^{2}$ we get

$$
z=r\left(4 \cos ^{3} \theta-3 \cos \theta\right)=\frac{4 r^{3} \cos ^{3} \theta}{r^{2}}-3 r \cos \theta=\frac{4 x^{3}}{x^{2}+y^{2}}-3 x .
$$

Therefore

$$
f(x, y)= \begin{cases}\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

b) Since $f(0,0)=0$ and

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\lim _{r \rightarrow 0} r \cos 3 \theta=0,
$$

we conclude that f is continuous at zero.
c) We first compute the partial derivatives at $(0,0)$:

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{x \rightarrow 0} \frac{f(x, 0)-f(0,0)}{x-0}=\lim _{x \rightarrow 0} \frac{x}{x}=1, \\
& f_{y}(0,0)=\lim _{y \rightarrow 0} \frac{f(0, y)-f(0,0)}{y-0}=\lim _{y \rightarrow 0} \frac{0}{y}=0 .
\end{aligned}
$$

Therefore the linearization of $f(x, y)$ at $(0,0)$ is

$$
L(x, y)=f(0,0)+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)=x .
$$

By definition, f is differentiable at $(0,0)$ if

$$
\lim _{(\Delta x, \Delta y) \rightarrow(0,0)} \frac{f(\Delta x, \Delta y)-L(\Delta x, \Delta y)}{\sqrt{\Delta x^{2}+\Delta y^{2}}}=0 .
$$

Since

$$
\lim _{r \rightarrow 0^{+}} \frac{r \cos 3 \theta-r \cos \theta}{r}=\lim _{r \rightarrow 0^{+}}(\cos 3 \theta-\cos \theta)
$$

does not exist (it depends on θ), it cannot be zero and we conclude that f is not differentiable at $(0,0)$.

The graph of f does not look flat near $(0,0)$ - there are infinitely many directions for the tangent at this point that are not all in the same plane.

Remark: Another way to compute the partial derivatives is as follows. On the positive half of the x-axis we have $\theta=0$ and on the positive half of the y-axis we have $\theta=\frac{\pi}{2}$. Thus

$$
\begin{aligned}
& f_{x}(0,0)=\lim _{r \rightarrow 0} \frac{z(r, 0)-z(0,0)}{r \cos 0-0}=\lim _{r \rightarrow 0} \frac{r \cos (3 \cdot 0)}{r}=\lim _{r \rightarrow 0} \cos 0=1, \\
& f_{y}(0,0)=\lim _{r \rightarrow 0} \frac{z\left(r, \frac{\pi}{2}\right)-z(0,0)}{r \sin \frac{\pi}{2}-0}=\lim _{r \rightarrow 0} \frac{r \cos \left(3 \cdot \frac{\pi}{2}\right)}{r}=\lim _{r \rightarrow 0} \cos \frac{3 \pi}{2}=0 .
\end{aligned}
$$

Note that $r \rightarrow 0$ includes both positive and negative values of r; the limits must match from the left and from the right (so $\theta=0$ also covers $\theta=\pi$, while $\theta=\frac{\pi}{2}$ also covers $\theta=-\frac{\pi}{2}$).

Calculus 2 (IEM)

Midterm Exam II

12 March 2021

Problem 2

Consider the function $f(x, y)=\sin x \cdot \sin y$ and let $\left(x_{0}, y_{0}\right)=\left(\frac{\pi}{2}, \frac{\pi}{3}\right)$.
a) Determine the partial derivatives $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y x}, f_{y y}$ at $\left(x_{0}, y_{0}\right)$.
b) Compute and simplify the function

$$
Q(x, y)=f\left(x_{0}, y_{0}\right)+(A(x, y)+\mathbf{b}) \cdot(x, y),
$$

where $\mathbf{b}=\left(f_{x}, f_{y}\right)$ and A is the linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by the matrix

$$
A=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)
$$

with the derivatives evaluated at $\left(x_{0}, y_{0}\right)$.
c) Classify the quadric surface $z=Q(x, y)$.

Solution

a) Differentiating with respect to x and y respectively gives

$$
\frac{\partial f}{\partial x}=\cos x \cdot \sin y, \quad \frac{\partial f}{\partial y}=\cos y \cdot \sin x
$$

By symmetry we have $\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial^{2} f}{\partial y^{2}}=-\sin x \cdot \sin y$ and by continuity (of the second-order partials) we have $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\cos x \cdot \cos y$. Therefore

$$
\begin{aligned}
f\left(x_{0}, y_{0}\right) & =\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}, \\
f_{x}\left(x_{0}, y_{0}\right) & =\cos \frac{\pi}{2} \cdot \sin \frac{\pi}{3}=0, \\
f_{y}\left(x_{0}, y_{0}\right) & =\sin \frac{\pi}{2} \cdot \cos \frac{\pi}{3}=\frac{1}{2}, \\
f_{x x}\left(x_{0}, y_{0}\right) & =f_{y y}\left(x_{0}, y_{0}\right)=-\sin \frac{\pi}{2} \cdot \sin \frac{\pi}{3}=-\frac{\sqrt{3}}{2}, \\
f_{x y}\left(x_{0}, y_{0}\right) & =f_{y x}\left(x_{0}, y_{0}\right)=\cos \frac{\pi}{2} \cdot \cos \frac{\pi}{3}=0 .
\end{aligned}
$$

b) We have

$$
A(x, y)+\mathbf{b}=\left(\begin{array}{cc}
-\frac{\sqrt{3}}{2} & 0 \\
0 & -\frac{\sqrt{3}}{2}
\end{array}\right)(x, y)+\left(0, \frac{1}{2}\right) .
$$

Taking the dot product with (x, y) and adding $f\left(x_{0}, y_{0}\right)$ gives

$$
\begin{aligned}
Q(x, y) & =(x, y) \cdot A(x, y)+\mathbf{b} \cdot(x, y)+f\left(x_{0}, y_{0}\right) \\
& =-\frac{\sqrt{3}}{2} x^{2}-\frac{\sqrt{3}}{2} y^{2}+\frac{1}{2} y+\frac{\sqrt{3}}{2} .
\end{aligned}
$$

c) The surface $z=Q(x, y)$ is an elliptic paraboloid. Its equation can be rewritten as

$$
Z=X^{2}+Y^{2}
$$

where

$$
X=x, \quad Y=y-\frac{1}{2 \sqrt{3}}, \quad Z=-\frac{2}{\sqrt{3}} z+\frac{13}{12} .
$$

Calculus 2 (IEM)

Midterm Exam II

12 March 2021

Problem 3

A minimal surface is a surface with the least surface area among all surfaces with the same boundary. Soap bubbles are a real world example. Minimal surfaces are precisely those satisfying the following property: if a piece of the surface is given by the equation $z=f(x, y)$, where f has continuous second order partial derivatives, then

$$
\left(1+z_{x}^{2}\right) z_{y y}+\left(1+z_{y}^{2}\right) z_{x x}=2 z_{x} z_{y} z_{x y}
$$

Let $S \subset \mathbb{R}^{3}$ be the surface defined by the equation $e^{z} \sin y=\sin x$.
a) Use implicit differentiation to compute the first and second order partial derivatives of z with respect to x and y.
b) Show that the surface S is minimal.

Solution

a) The surface is given by $e^{z} \sin y-\sin x=0$ so differentiating with respect to x and y, while keeping in mind that $z=z(x, y)$, gives

$$
\begin{aligned}
& 0=z_{x} e^{z} \sin y-\cos x \\
& 0=z_{y} e^{z} \sin y+e^{z} \cos y
\end{aligned}
$$

Solving for z_{x} and z_{y} gives

$$
z_{x}=\frac{\cos x}{e^{z} \sin y}=\frac{\cos x}{\sin y} \cdot \frac{\sin y}{\sin x}=\cot x, \quad z_{y}=-\frac{\cos y}{\sin y}=-\cot y .
$$

Here we used the fact that the identity $e^{z} \sin y=\sin x$ holds on the surface. Differentiating further gives

$$
\begin{aligned}
& z_{x x}=\frac{\mathrm{d}}{\mathrm{~d} x} \cot x=-\frac{1}{\sin ^{2} x} \\
& z_{y y}=-\frac{\mathrm{d}}{\mathrm{~d} y} \cot y=\frac{1}{\sin ^{2} y} \\
& z_{x y}=z_{y x}=0
\end{aligned}
$$

b) Substituting gives

$$
\begin{aligned}
\left(1+z_{x}^{2}\right) z_{y y}+\left(1+z_{y}^{2}\right) z_{x x} & =\frac{1}{\sin ^{2} y}\left(1+\cot ^{2} x\right)-\frac{1}{\sin ^{2} x}\left(1+\cot ^{2} y\right) \\
& =\frac{1}{\sin ^{2} y} \cdot \frac{1}{\sin ^{2} x}-\frac{1}{\sin ^{2} x} \cdot \frac{1}{\sin ^{2} y} \\
& =0=2 z_{x} z_{y} z_{x y}
\end{aligned}
$$

and we are done. Here we used the fact that $z_{x y}=0$ and that for all $\theta \neq k \pi$ the following identity holds:

$$
1+\cot ^{2} \theta=\frac{1}{\sin ^{2} \theta}
$$

Note: The problem can also be solved by showing

$$
\begin{aligned}
& \left(1+x_{y}^{2}\right) x_{z z}+\left(1+x_{z}^{2}\right) x_{y y}=2 x_{y} x_{z} x_{y z} \\
& \left(1+y_{x}^{2}\right) y_{z z}+\left(1++y_{z}^{2}\right) y_{x x}=2 y_{x} y_{z} y_{x z} .
\end{aligned}
$$

That would also cover points with $x=m \pi$ and $y=n \pi$, for which z cannot be written as a function of x and y (recall the Implicit Function Theorem).

Calculus 2 (IEM)

Midterm Exam II

12 March 2021

Problem 4

The body mass index of a human is defined as

$$
b=\frac{m}{h^{2}},
$$

where m is mass and h is height. Suppose that, due to measurement errors, the values $m+\Delta m$ and $h+\Delta h$ are observed instead of the actual values m and h respectively. Further suppose that $|\Delta m|$ is at most 0.1% of m and $|\Delta h|$ is at most 0.1% of h, i.e. the error is at most 0.1% up or down for both values. Using differentials, estimate the resulting error in b (as a percentage of b) in the worst case scenarios.

Solution

The differential of b is

$$
\mathrm{d} b=\frac{\partial b}{\partial m}(m, h) \mathrm{d} m+\frac{\partial b}{\partial h}(m, h) \mathrm{d} h=\frac{1}{h^{2}} \mathrm{~d} m-\frac{2 m}{h^{3}} \mathrm{~d} h .
$$

Since $b=b(m, h)$ is differentiable (unless $h=0$), if $b+\Delta b$ denotes the miscalculated value, we have $\Delta b \approx \mathrm{~d} b$ and therefore

$$
\frac{\Delta b}{b} \approx \frac{1}{b} \cdot \frac{1}{h^{2}} \Delta m-\frac{1}{b} \cdot \frac{2 m}{h^{3}} \Delta h .
$$

Substituting $b=\frac{m}{h^{2}}$ on the right-hand side gives

$$
\frac{\Delta b}{b} \approx \frac{\Delta m}{m}-2 \frac{\Delta h}{h} .
$$

Since $\frac{|\Delta m|}{m} \leq 0.1 \%$ and $\frac{|\Delta h|}{h} \leq 0.1 \%$, this gives

$$
\frac{|\Delta b|}{b} \approx 0.3 \%
$$

in the worst case scenarios (either b is overestimated by overestimating m and underestimating h, or b is underestimated by underestimating m and overestimating h).

